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Quantum supremacy experiments

Random circuit sampling (RCS):
• Use current noisy intermediate scale

quantum (NISQ) devices to sample from a
random quantum circuit

• Use a statistical test to evaluate how good
the device is performing

• Claim that the same performance cannot be
achieved classically

Google and USTC’s 53-60 qubit experiments
represent a great advance in physics
experiments, and exploring the high
complexity regime of quantum mechanics



Quantum supremacy experiments

Random circuit sampling (RCS):
• Use current noisy intermediate scale
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• Use a statistical test to evaluate how good
the device is performing

• Claim that the same performance cannot be
achieved classically

This talk: recent progress on understanding the
computational complexity of RCS
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Part I: Overview of RCS and our
main result



Motivation: the extended Church-Turing thesis

• Extended Church-Turing thesis [BV’93]: any “reasonable” model of 
computation can be efficiently simulated on a probabilistic Turing 
machine
• Quantum supremacy: experimental violation of ECT using NISQ

devices; two aspects:
• Computational complexity: does the model of noisy RCS violate the

ECT in the asymptotic sense?
• Finite size experiments: does current 53-60 qubit experiments take a

lot of resources to simulate classically?



RCS experiments

• Sample a random circuit 𝐶 on 𝑛
qubits with depth 𝑑
• 𝑑 = Ω (log 𝑛) for anti-concentration

• Fix the circuit, obtain 𝑀 samples
from the noisy distribution %𝑝 𝐶, 𝑥 ,
𝑥 ∈ {0,1}!

• Compute a statistical measure
𝐹(𝐶, 𝑥", … , 𝑥#)
• Takes exp(𝑛) time

• Repeat the procedure for a few
circuits

At each step, each qubit is subject to an
arbitrarily small constant amount of noise



The complexity of noisy RCS
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experiment
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100011011011
001101100000
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algorithm

𝑀 samples Takes poly(𝑀) time

No statistical test can tell the difference

A polynomial-time classical algorithm for noisy random circuit sampling
with Dorit Aharonov, Xun Gao, Zeph Landau, Umesh Vazirani; arxiv: 2211.03999



The complexity of noisy RCS

• Theorem. [AGLLV’22] There is a classical algorithm that, on input a 
random circuit 𝐶 on 𝑛 qubits, outputs a sample from a distribution 
that is 𝜀-close to the noisy output distribution %𝑝(𝐶) in total variation 
distance with success probability at least 0.99 over the choice of 𝐶 in 
time poly 𝑛, "

$
= (𝑛/𝜀)%(")

• The assumptions are anti-concentration (Ω(log 𝑛) depth), and
sufficient randomness in the gate set (see Discussion)
• Previously known 𝑛%(()* "/$) [Gao and Duan’18]
• Next: how to understand this result



Comparing classical simulation and quantum
experiments
• Theorem. [AGLLV’22] There is a classical algorithm that, on input a 

random circuit 𝐶 on 𝑛 qubits, outputs a sample from a distribution 
that is 𝜀-close to the noisy output distribution %𝑝(𝐶) in total variation 
distance with success probability at least 0.99 over the choice of 𝐶 in 
time poly 𝑛, "

$
= (𝑛/𝜀)%(")

• Fact: two probability distributions cannot be distinguished by any
statistical test on 𝑀 samples (say with probability 0.51), if they are
0.01/𝑀 close in total variation distance
• By choosing 𝜀 = 0.01/𝑀, we have running time poly(𝑛,𝑀) to

guarantee indistinguishability



Comparing classical simulation and quantum
experiments
• Theorem. [AGLLV’22] There is a classical algorithm that, on input a 

random circuit 𝐶 on 𝑛 qubits, outputs a sample from a distribution 
that is 𝜀-close to the noisy output distribution %𝑝(𝐶) in total variation 
distance with success probability at least 0.99 over the choice of 𝐶 in 
time poly 𝑛, "

$
= (𝑛/𝜀)%(")

• The running time of our algorithm is at most polynomial in the
running time of the experiment, in order to be indistinguishable from
the experiment
• Currently the running time is not practical, 𝑂(𝑀"/,) where 𝛾 is noise 

per gate



The role of circuit depth

• Experimentally, need enough samples to detect a non-trivial quantum signal

• Due to noise, the output distribution of noisy RCS is 2!"($) close to uniform
• Experimentally needs at least𝑀 = 2&($) samples
• In general, both the experiment and our algorithm have running time
exponential in 𝑑

ideal RCSuniform noisy RCS

2!"($)



The role of circuit depth, 𝑑 = Θ(log 𝑛)

• Anti-concentration is a central assumption for both the experiment
and our algorithm, needs 𝑑 = Ω(log 𝑛)
• Want the experiment to have polynomial sample complexity, needs
𝑑 = 𝑂(log 𝑛)
• Therefore, 𝑑 = Θ(log 𝑛) is the sweet spot for scalable quantum

supremacy [Deshpande et al’21]

ideal RCSuniform noisy RCS

1/𝑛& Our algorithm can
achieve arbitrary 1/poly

Conjectured to be hard



Part II: Prior work on the
computational complexity of RCS



The first genre: ideal RCS

Hardness of ideal RCS:
Goal: Prove it is hard to sample from a distribution
that is 𝜀-close to the ideal distribution in total
variation distance

11011000001011111000100110110111100111101001011110101,
11110000101010101110111011100000000100011111011101001,
00010001011010100010110010000101000000110100001010010…

By known reductions [Stockmeyer’85, AA’11], assuming anti-concentration, suffices to show 
#P hardness to compute | 0' 𝐶 0' |( within additive error 𝜀/2' for a random circuit 𝐶



Improved robustness in the ideal regime

Task Early result Result of [BFLL’21]
and [KMM’21]

Result of [Krovi’22] Goal

Random circuit 
sampling
(𝑛 qubits,
𝑚 gates)

2!"#$%(')
[BFNV’19]
exp(−𝑂(𝑚)))
[Mov’20]

exp −𝑂 𝑚 log𝑚 exp −𝑂 𝑚 𝑂(2!*)

Goal 𝑂(2!*)0

Robustness to
additive imprecision
(random circuit
sampling)

exp(−𝑂(𝑚)))
[Mov’20]

[BFLL’21]
[KMM’21]

2!"#$%(')
[BFNV’19]

[Krovi’22]



The second genre: high noise regime

• Instead of being close to the output distribution of ideal RCS in TVD,
actual experiments only achieve a tiny correlation with the ideal
distribution due to noise; want to show this is still hard classically
• Linear cross entropy [Google’19] (n=53):
• Given 𝑀 samples from the device 𝑥", … , 𝑥#, calculate the output

probabilities of the ideal circuit, compute 2! "
#
∑- 𝑝-./01(𝑥-) − 1

• In expectation, this equals 0 if the samples are uniform
• If the samples are from 𝑝4$567, this is related to the 2nd moment of 𝑝4$567

• Intuition: if the experimental distribution is more correlated with
𝑝-./01, then this quantity tends to be larger



The second genre: high noise regime

• Instead of being close to the output distribution of ideal RCS in TVD,
actual experiments only achieve a tiny correlation with the ideal
distribution due to noise; want to show this is still hard classically
• 𝑋𝐸𝐵 = 2!𝔼2,4~6!"#𝑝-./01(𝑥) − 1 = 2!𝔼2 ∑4 𝑝/46(𝑥)𝑝-./01(𝑥) − 1
• When exp = uniform, XEB = 0; when exp = ideal, XEB ≈ 1 (anti-concentration)

• Hard to estimate as 𝑝-./01 takes 2! time to compute, but there are
ways to compute at small sizes and heuristically extrapolate to large
size
• The heuristic extrapolation works well above log 𝑛 depth
• Google’s experiment on n=53 qubits and d=20 achieves XEB=0.002, only

achieves a tiny correlation with ideal RCS



Evidence of high complexity in noisy regime

• Focus on noisy regime: want to show even the tiny XEB (0.002 in
Google’s experiment) in experiments is hard to achieve classically
• [Aaronson and Gunn’19] formulated the XQUATH conjecture, which

says that even a tiny correlation (order 27!) with the ideal RCS
distribution is hard to achieve classically
• Similar to the QUATH conjecture of [Aaronson and Chen’16]
• The strong parameter (order 2!') was necessary to support the hardness of

tiny XEB

• This provided a way to heuristically argue that even the very small 
XEB achieved in actual 53-60 qubit experiments was a classically 
difficult computational task



Evidence of high complexity in noisy regime

• However, recent work of [Gao et al’21] cast doubt on these
arguments; specifically, it shows 27%(.) correlation can be achieved
classically
• However, even if the original strong conjectures are false, there could be a

weaker conjecture that still supports the hardness of noisy experiments
• The result only specifically targets the XEB test; the other statistical tests

could still be hard to achieve classically
• This reopens the question: is there high complexity in noisy RCS 

experiments?
• We show that no statistical test can distinguish between the

experiment with 𝑀 samples and our poly(𝑀) time algorithm



Summary

• The running time of our algorithm is at most polynomial in the
running time of the experiment, in order to be indistinguishable from
the experiment
• In particular, at 𝑑 = Θ(log 𝑛), both the experiment and our algorithm

have poly(𝑛) running time

• Therefore, noisy RCS cannot be the basis of a scalable experimental
violation of the extended Church-Turing thesis
• It’s an exciting time to start developing new proposals for near-term quantum

computational advantage, with a better complexity foundation, e.g. practical
implementation of cryptographic proof of quantumness protocols



Interlude: progress on practical simulation

• 𝑋𝐸𝐵 = 2!𝔼2,4~6$%&𝑝-./01(𝑥) − 1 = 2!𝔼2 ∑4 𝑝018(𝑥)𝑝-./01(𝑥) − 1
• When alg = uniform, XEB = 0; when alg = ideal, XEB = 1

• [Google’19] achieves 0.2% XEB, claims 10000 years classical running
time on the largest supercomputer using the best algorithm then
• Since then, much progress has been made with practical tensor

network algorithms
• [Pan, Chen and Zhang’21] used brute-force tensor network simulation

to achieve the same XEB using 512 GPUs in 15 hours



Interlude: progress on practical simulation

• Problem: these brute force algorithms are inherently exponential
time, therefore become impractical if the system size increases by a
few qubits
• Currently, the largest RCS experiment on 60 qubits [USTC’21] has not

been challenged
• [Gao et al’21] algorithm is scalable with system size, but currently

achieves 10% of the XEB of Google’s experiment
• An interesting future direction is to develop practical 

implementations of our algorithm



Part III: Proof sketch



Prior argument: Feynman path integral

• Let 𝐶 = 𝑈. …𝑈9𝑈" be a random circuit, Feynman path integral:

• Intuition [Aaronson and Gunn’19]: each path contributes equally,
there are exponentially (2!.) many paths in total, if we sum over
poly(𝑛) random paths, only gets exponentially small correlation
• Therefore, conjecture that no classical algorithm can achieve better

than 1/2! correlation



Our algorithm: Pauli path integral

Main idea: (1) in the Pauli basis the paths are nonuniform; order the paths by
importance, only consider the most important paths
(2) Design an efficient algorithm to calculate those important paths; the algorithm 
uses the unitarity constraint

Due to noise, the 
contribution decays 
exponentially with 
#non-I

The contribution is 
uniform



Idea (1): non-uniformity of Pauli paths

• Idea: consider Feynman path integral in Pauli (Fourier) basis, then the
contribution from a low-weight path is much higher than a high-
weight path due to noise
• Step 1: switch from vector basis to operator basis (think about density

matrix)
• Step 2: the density matrix at each layer is a linear combination of

Pauli operators; think about evolving Pauli operators
• Vector basis: transition amplitude from 𝑖 to 𝑗 is 𝑗 𝑈 𝑖
• Pauli basis: “transition amplitude” from 𝑠4 to 𝑠8 is Tr(𝑠8𝑈𝑠4𝑈9)



Idea (1): non-uniformity of Pauli paths

• Idea: consider Feynman path integral in Pauli (Fourier) basis, then the
contribution from a low-weight path is much higher than a high-
weight path due to noise
• Depolarizing noise: 𝐼 → 𝐼; 𝑋, 𝑌, 𝑍 → 1 − 𝛾 𝑋, 𝑌, 𝑍
• Pauli path integral:
• 𝑝 𝐶, 0' = ∑: 𝑓(𝐶, 𝑠)
• @𝑝 𝐶, 0' = ∑:(1 − 𝛾)|:|𝑓(𝐶, 𝑠)

• The contribution of a Pauli path in a noisy circuit decays exponentially
with its Hamming weight
• Algorithm: compute ∑::|:|=ℓ(1 − 𝛾)|:|𝑓(𝐶, 𝑠), choose ℓ = 𝑂(log 1/𝜀)



Bounding the truncation error

• Algorithm: compute ∑::|:|=ℓ(1 − 𝛾)|:|𝑓(𝐶, 𝑠), choose ℓ = 𝑂(log 1/𝜀)
to achieve total variation distance 𝜀
• The bound is nontrivial as each 𝑓(𝐶, 𝑠) can be both positive and negative

• The proof uses two properties of random circuits:
• Orthogonality: 𝔼2 𝑓 𝐶, 𝑠 𝑓 𝐶, 𝑠? = 0 when 𝑠 ≠ 𝑠′
• Anti-concentration: 𝔼2 ∑4∈{B,"}' 𝑝(𝐶, 𝑥)9 = 𝑂(1) P 27!

• Proof: use Cauchy-Schwarz to convert to L2; orthogonality kills all
cross terms and gives a sum-of-square; that can be bounded using AC



Idea (2): efficient enumeration of Pauli paths

• Unitarity: identity only goes to identity; nonidentity only goes to
nonidentity
• 𝑗 𝑈 𝑖 can be non-zero for any 𝑖, 𝑗
• Tr(𝑠8𝑈𝑠4𝑈9) is only non-zero when both 𝑠4, 𝑠8 are identity, or both are non-

identity
• A non-zero Pauli path must satisfy this constraint everywhere

• Continuity: the configuration of a layer cannot deviate too much from
the previous layer



Idea (2): efficient enumeration of Pauli paths

• Unitarity: identity only goes to identity; nonidentity only goes to
nonidentity
• 𝑗 𝑈 𝑖 can be non-zero for any 𝑖, 𝑗
• Tr(𝑠8𝑈𝑠4𝑈9) is only non-zero when both 𝑠4, 𝑠8 are identity, or both are non-

identity
• A non-zero Pauli path must satisfy this constraint everywhere

• Continuity: the configuration of a layer cannot deviate too much from
the previous layer
• Using this we design an enumeration algorithm that calculates all non-zero

paths below weight ℓ in time 2<(ℓ) = poly(1/𝜀)



Part IV: Discussion & conclusions



Assumptions in our main result

• Anti-concentration: we assume anti-concentration 𝔼2 ∑4 𝑝(𝐶, 𝑥)9 =
𝑂(1) P 27!, which is proven for certain architectures and is believed
to hold above log depth for general architectures [Dalzell, Hunter-
Jones, Brandão’20]

• What about sub logarithmic depth random circuits?
• Theoretically, it is even unclear if ideal RCS is hard; for example, [Napp et al’19]

showed that ideal RCS in 2D with very small depth is classically simulable
• Existing RCS experiments rely on Porter-Thomas for statistical benchmarking,

which is stronger than anti-concentration



Assumptions in our main result

• Randomness in the gate set: we assume the gate set is closed under
random Pauli gates; this implies orthogonality
• e.g., holds for Haar random 2-qubit gates, or fixed 2-qubit gate + Haar random

single qubit gates

• What about less random gate sets?
• Need at least some randomness for e.g. producing Porter-Thomas behavior
• While we do not know if the result provably works for Google and USTC’s gate

sets, it works for a closely related gate set
• Inserting random Z rotations



Conclusion

• RCS is an exciting experiment with multiple aspects:
• Benchmarking quantum devices
• Current back-and-forth with classical spoofing algorithms inspires the continued

improvement of quantum devices
• Issues with scaling up:
• Theoretically, we give strong negative evidence for RCS as a scalable

experimental violation of the extended Church-Turing thesis
• Practically, harder to perform verification as the system gets bigger

• It’s an exciting time to start developing new proposals for near-term
quantum computational advantage, with a better complexity foundation
• Resource estimation for cryptographic proof of quantumness protocols



Future: the next challenge problem

• RCS and quantum supremacy experiments provided a clear target,
which motivated a giant leap in the development of larger and better
quantum devices

• The accumulated experimental advances and theoretical
understanding in complexity theory provides the foundation for the
next challenge problem for the next generation of NISQ devices


