Noise and the frontier of quantum supremacy

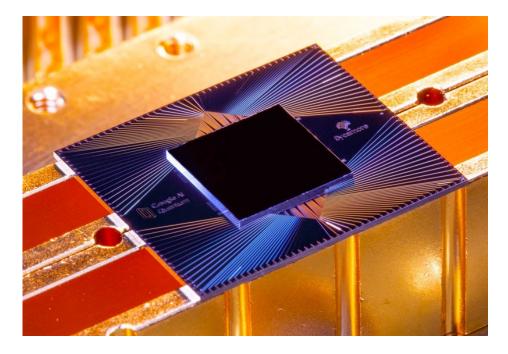
Yunchao Liu (UC Berkeley)

joint work with Adam Bouland (Stanford), Bill Fefferman (U of Chicago), Zeph Landau (UC Berkeley)

arxiv: 2102.01738

(see related talk by Kondo, Mori and Movassagh)

Quantum supremacy experiments

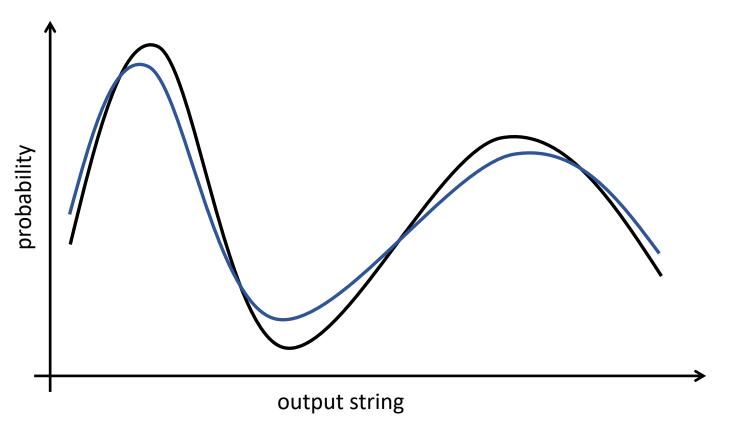


Random Circuit Sampling (Google Sycamore)

BosonSampling (USTC Jiuzhang)

This talk: improved complexity-theoretic evidence that these tasks are hard for classical computers

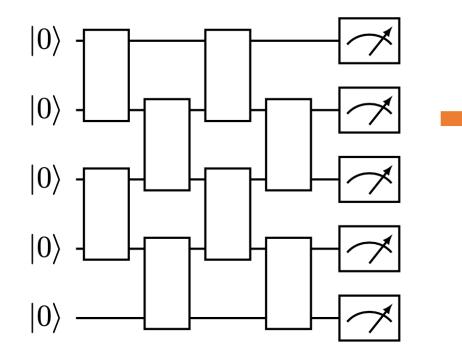
Evidence of hardness for quantum supremacy experiments



- Goal: prove hardness of sampling with small total variation distance from the ideal distribution
- ideal regime
- Limitations: cannot prove hardness even in this idealized setting due to insufficient robustness

First result: significantly improve the robustness of prior hardness results

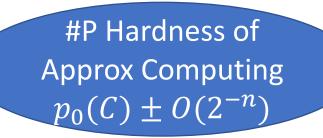
Computational model: ideal regime



ideal regime:

Goal: Prove it is hard to sample from a distribution that is close to the ideal distribution in total variation distance

Evidence for hardness of sampling



[Stockmeyer'85, AA'11]

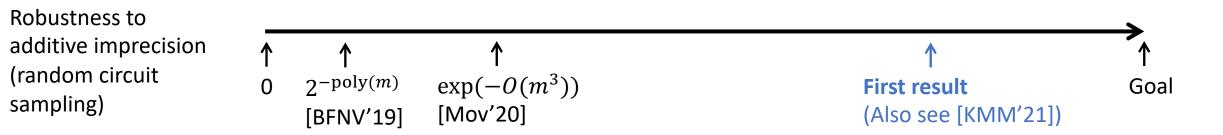
Hardness of Approx Sampling

Evidence for hardness of sampling

Goal: #P hardness of computing $|\langle 0|C|0\rangle|^2 \pm O(2^{-n})$

First result: improved robustness in the ideal regime

Task	Previous result	Our result	Goal	Remark
Random circuit sampling (<i>n</i> qubits, <i>m</i> gates)	$2^{-poly(m)}$ [BFNV'19] $exp(-O(m^3))$ [Mov'20]	$\exp(-O(m \log m))$ See also related work of [KMM'21]	0(2 ⁻ⁿ)	



First result: improved robustness in the ideal regime

Task	Previous result	Our result	Goal	Remark
Random circuit sampling (<i>n</i> qubits, constant depth)	$2^{-poly(n)}$ [BFNV'19] $exp(-O(n^3))$ [Mov'20]	$\exp(-O(n \log n))$ See also related work of [KMM'21]	$0(2^{-n})$	For constant depth circuits, tight up to $O(\log n)$ factor in the exponent

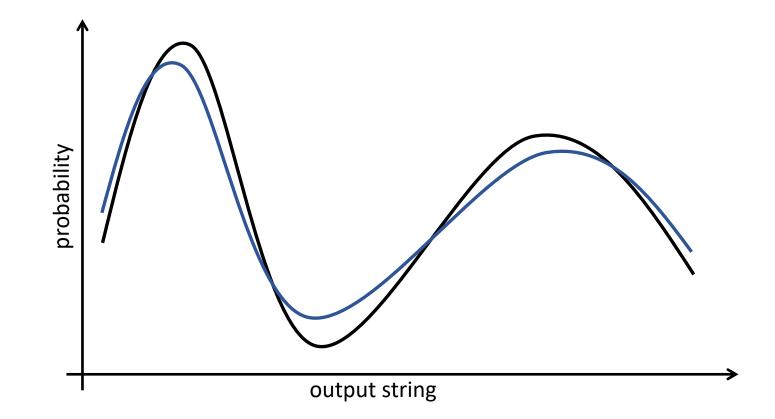
Robustness to
additive imprecision
(random circuit
sampling) \uparrow \uparrow \uparrow \uparrow 02^{-poly(n)}
[BFNV'19]exp(-O(m^3))First result
(Also see [KMM'21])Goal
(Also see [KMM'21])

First result: improved robustness in the ideal regime

Task	Previous result	Our result	Goal	Remark
Random circuit sampling (<i>n</i> qubits, constant depth)	$2^{-poly(n)}$ [BFNV'19] $exp(-O(n^3))$ [Mov'20]	$\exp(-O(n \log n))$ See also related work of [KMM'21]	<i>0</i> (2 ⁻ⁿ)	For constant depth circuits, tight up to $O(\log n)$ factor in the exponent
BosonSampling $(n \text{ photons}, n^2 \text{ detectors})$	$\exp(-O(n^4))$ [AA'11]	$\exp(-6n\log n)$	$\exp(-n\log n)$	Tight up to constant factor in the exponent

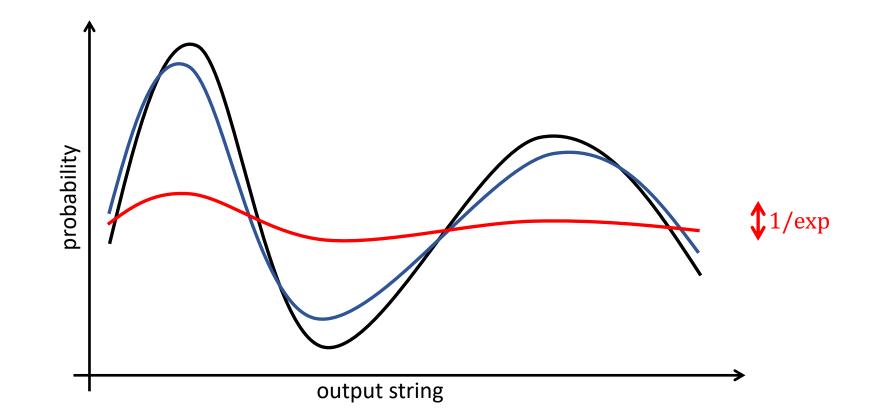
$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad for an and a for a first result Goal (AA'11)$$

Theory vs. Experiment



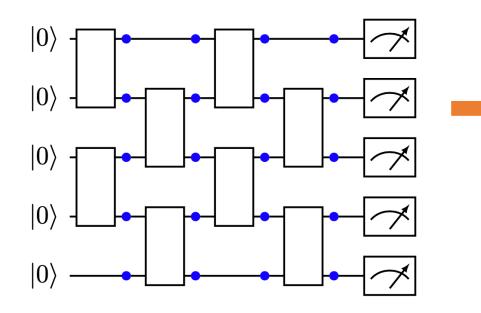
ideal regime: Goal is to prove hardness of sampling from a distribution that is very close to the ideal distribution

Theory vs. Experiment



High noise regime: in experiments we only observe a tiny deviation from uniform along the correct direction

New model: high-noise regime



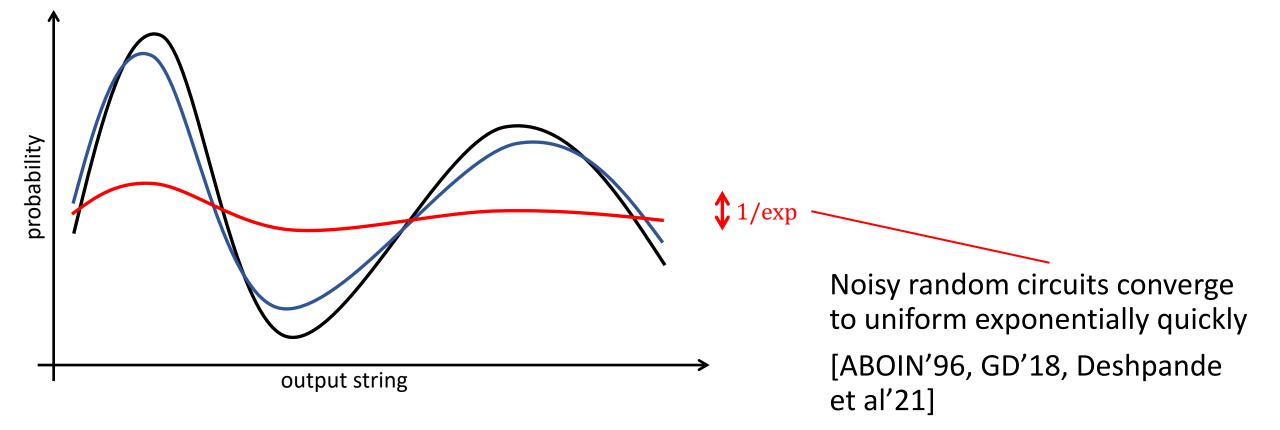
Blue: noise channels

High-noise regime:

Is it hard to sample from the noisy distribution? Is it hard to compute the output probability of noisy circuits?

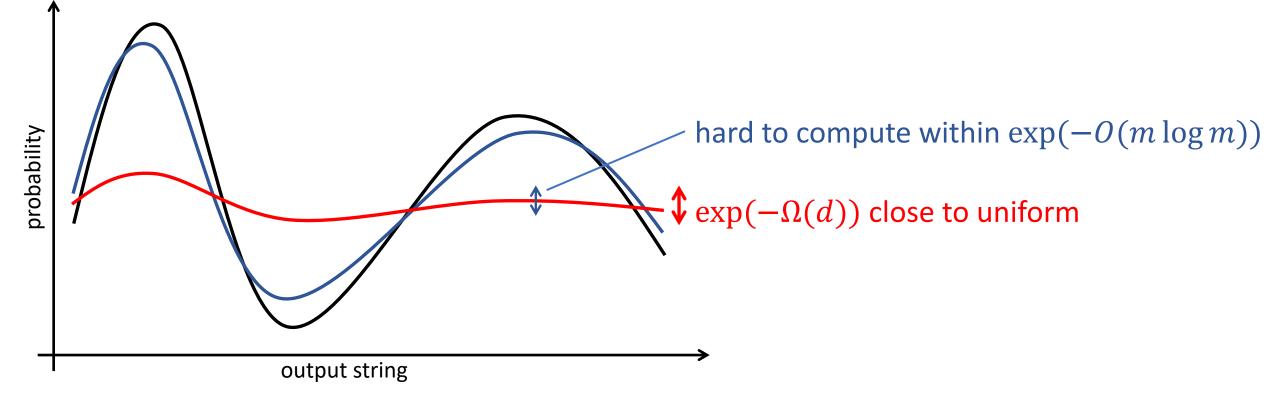
Is there any signal of hardness in these highly noisy distributions?

New model: high-noise regime



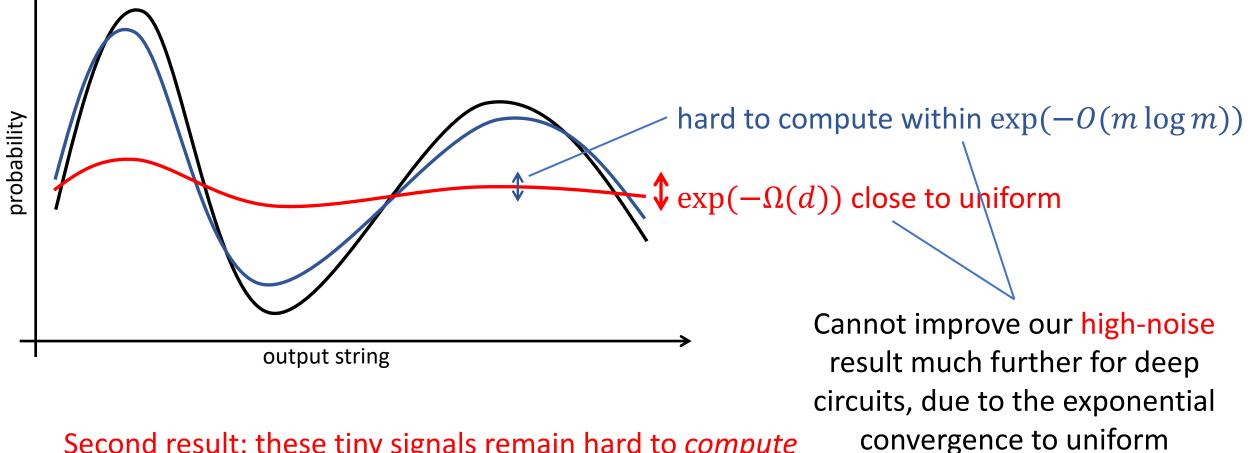
Second result: these tiny signals remain hard to *compute*

Second result: evidence of hardness in the high-noise regime



Second result: these tiny signals remain hard to *compute*

Second result: evidence of hardness in the high-noise regime



Second result: these tiny signals remain hard to *compute*

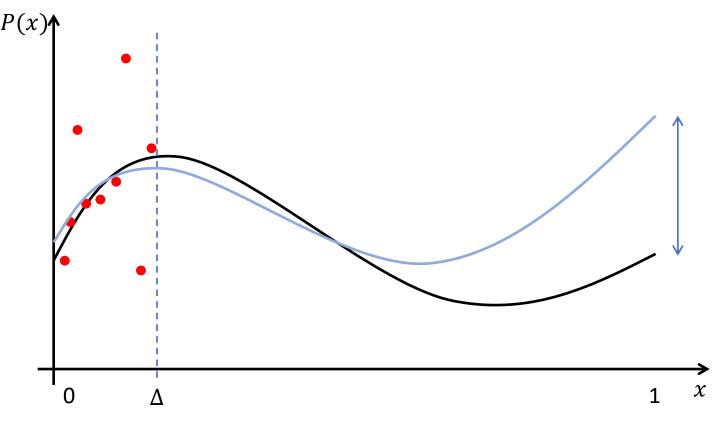
Proof sketch

An algorithm for computing the output probability of random circuits

Polynomial structure [AA'11, BFNV'19, Mov'20]

An algorithm for computing the output probability of any circuit

Proof techniques: first result



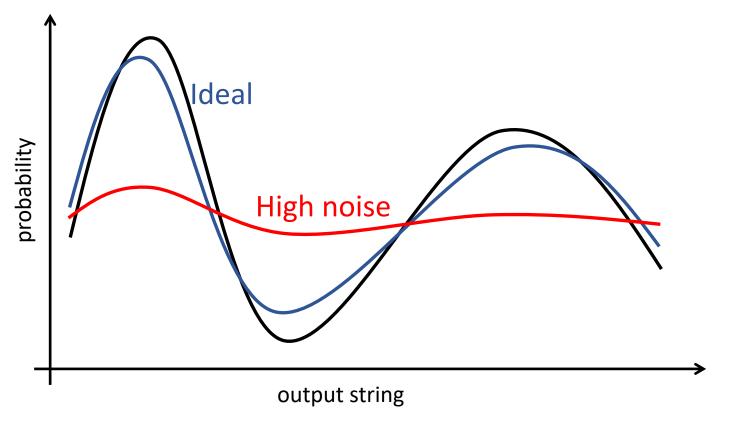
- The problem reduces to polynomial interpolation on noisy data points [AA'11, BFNV'19, Mov'20]
- We develop a robust Berlekamp-Welch argument that
 - simplifies the proof
 - tolerates more errors
 - reduces the extrapolation error

Proof techniques: second result

Hardness of ideal
circuitsLinearity of noise channels
Preserves the polynomial structureHardness of noisy
circuits

- The same worst to average case reduction techniques also apply to the high noise setting
- Q: what about worst case hardness?
- A: error detection [Fujii'16]

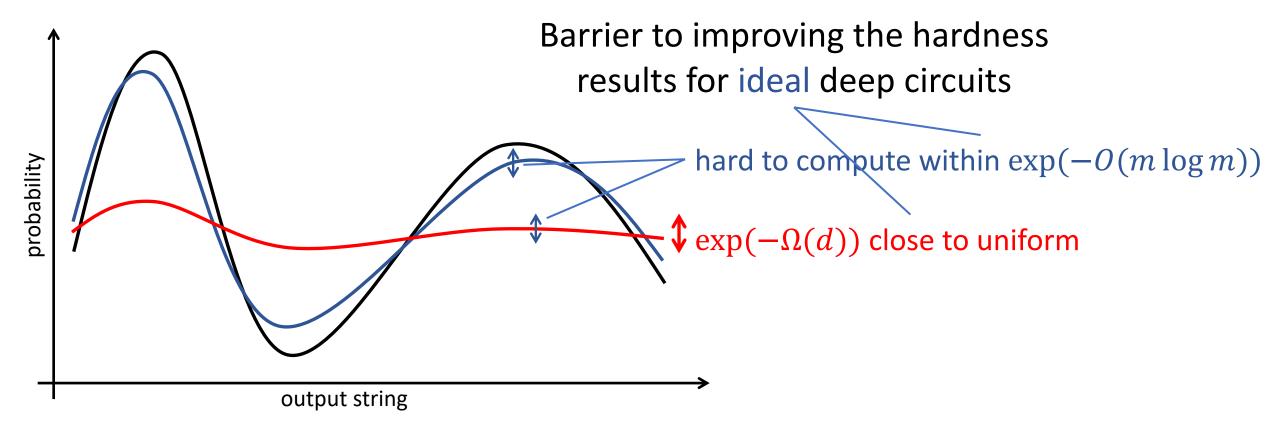
Summary of our results



• Our result: we substantially improve the robustness of prior hardness results in the ideal setting

 Our result: we give initial evidence of hardness with exponentially decreasing fidelity

High-noise result implies barrier to improving ideal result



Barriers to proving hardness of sampling (in the ideal regime)

Random circuit sampling

- Noise barrier [This work]
- Depth barrier [Napp et al'20]
- Polynomial interpolation barrier [AA'11]

BosonSampling

- Polynomial interpolation barrier [AA'11]
- Q: do noise and depth barriers apply?

- Our result: $\exp(-O(n \log n))$
- Goal: $O(2^{-n})$

- Our result: $exp(-6n \log n)$
- Goal: $\exp(-n \log n)$