A rigorous and robust quantum speed-up in supervised machine learning

Yunchao Liu (UC Berkeley)

Joint work with Srinivasan Arunachalam and Kristan Temme (IBM Research)

arxiv: 2010.02174

Exciting developments in NISQ experiments

• Quantum supremacy [Arute et al'19, Zhong et al'20]

- Quantum chemistry [Arute et al'20]
- Combinatorial optimization [Harrigan et al'21]
- Machine learning [Peters et al'21]
- etc...

Exciting developments in NISQ experiments

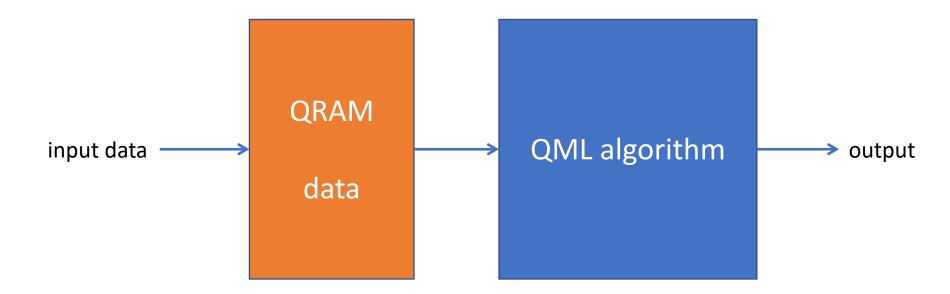
• Quantum supremacy [Arute et al'19, Zhong et al'20]

- Quantum chemistry [Arute et al'20]
- Combinatorial optimization [Arute et al'21]
- Machine learning [Peters et al'21]
- etc...

This talk: theoretical evidence of quantum advantage using quantum kernel methods

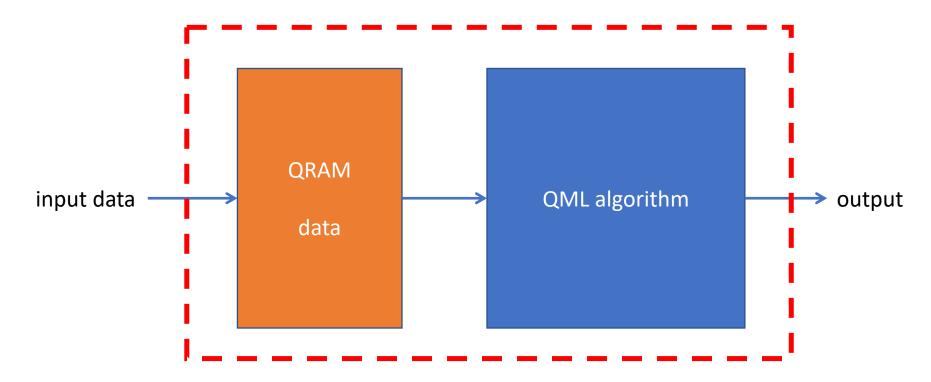
- QRAM-based algorithms [HHL'09, etc...]
 - Amplitude encoding: n dimensional vector stored in $\log n$ qubits
 - Pros: polylog(n) running time

• QRAM-based algorithms [HHL'09, etc...]



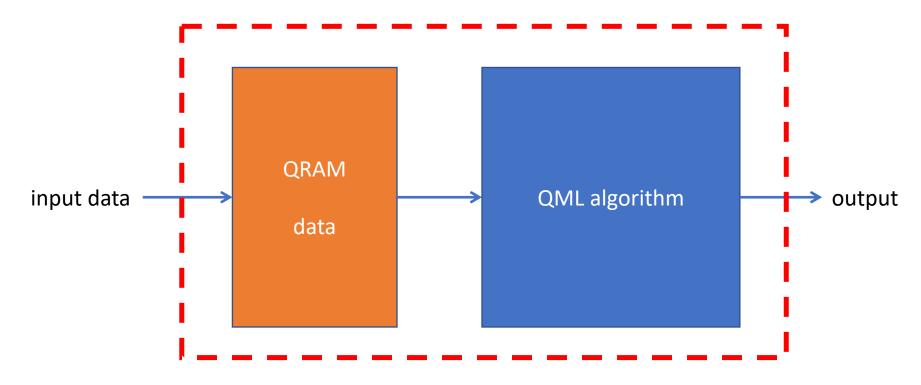
Limitations: QRAM is hard to implement

QRAM-based algorithms [HHL'09, etc...]



Limitations: no provable end-to-end exponential speed-up [Aaronson'15]

• QRAM-based algorithms [HHL'09, etc...]



Limitations: dequantization argument [Tang'18]

- QRAM-based algorithms [HHL'09, etc...]
 - Amplitude encoding: n dimensional vector stored in $\log n$ qubits
 - Pros: polylog(n) running time
 - Cons: hard to implement, not end-to-end, dequantization

- Heuristic QML algorithms
 - QNN, QGAN, kernel methods, etc...
 - Works on classical data
 - Pros: can be implemented on near-term hardware
 - Cons: lack of evidence for quantum advantage

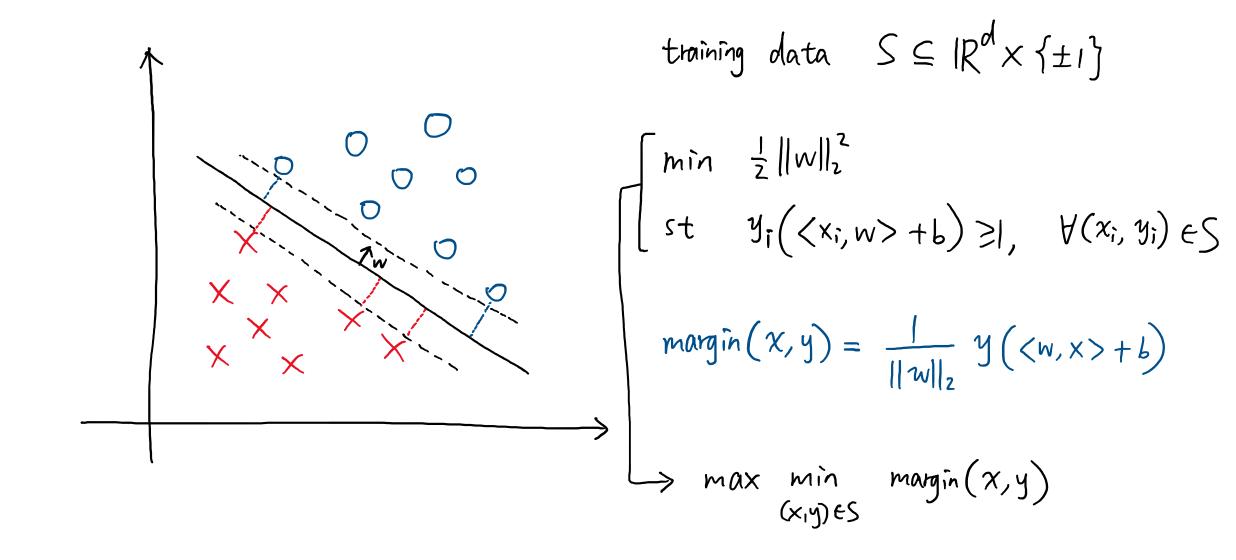
Results

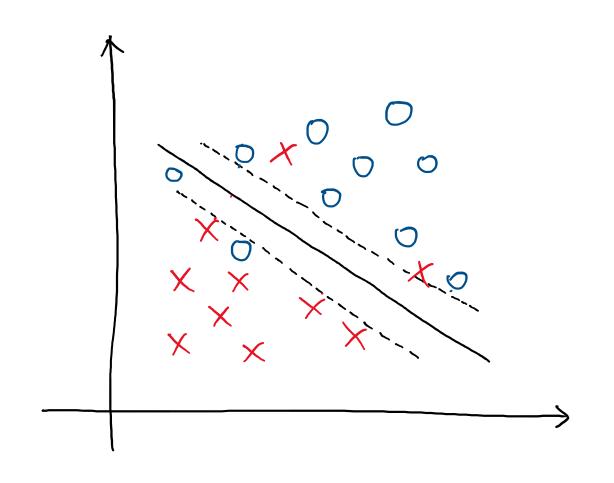
Quantum kernel methods [Havlíček et al'19, Schuld et al'19]

- Classical data vectors are mapped to quantum states via a quantum feature map
- A linear classifier in Hilbert space can be efficiently obtained via the kernel method

Our results

- We show this algorithm can provably solve a classification problem, and this problem is hard for all classical algorithms
- Evidence of end-to-end quantum speed-up



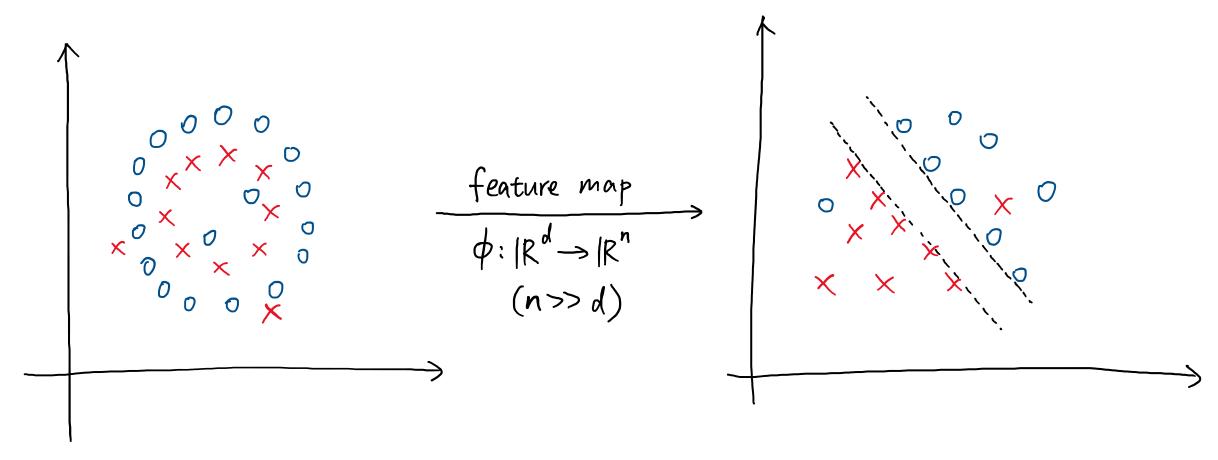


training data
$$S \subseteq \mathbb{R}^d \times \{\pm 1\}$$

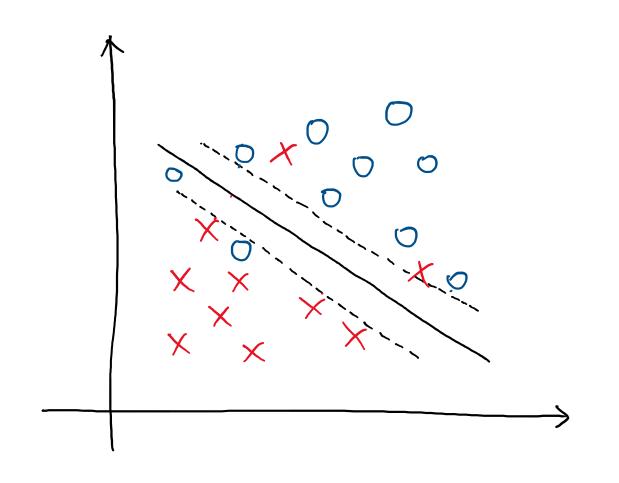
min
$$\frac{1}{2} ||w||_{2}^{2} + \frac{\lambda}{2} \sum_{i} g_{i}^{2}$$

st $y_{i}(\langle x_{i}, w \rangle + b) \geq |-g_{i}|$
 $g_{i} \geq 0$

margin
$$(x, y) = \frac{1}{\|w\|_2} y(\langle w, x \rangle + b)$$



Problem: how to do optimization in high dimensional feature space?



min
$$\frac{1}{2} \|w\|_{2}^{2} + \frac{\lambda}{2} \sum_{i} g_{i}^{2}$$

st $y_{i} (\langle \phi(x), w \rangle) \geq 1 - g_{i}$
 $f_{i} \geq 0$
 $\int duality$

max $\sum_{i} \alpha_{i} - \frac{1}{2\lambda} \sum_{i} \alpha_{i}^{2}$
 $-\frac{1}{4} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} (\langle \phi(x_{i}), \phi(x_{j}) \rangle + 1)$
 $f(x_{i}, x_{i})$

training

min
$$\frac{1}{2} ||w||_{2}^{2} + \frac{\lambda}{2} \sum_{i} g_{i}^{2}$$

st $y_{i} (\langle \phi(x), w \rangle) \geq 1 - g_{i}$
 $g_{i} \geq 0$
 $\int duality$

max $\sum_{i} \alpha_{i} - \frac{1}{2\lambda} \sum_{i} \alpha_{i}^{2}$
 $-\frac{1}{4} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} (\langle \phi(x_{i}), \phi(x_{j}) \rangle + 1)$
 $k(x_{i}, x_{j})$

testing

$$y_{pred} = sign(\langle w, \phi(x) \rangle)$$

$$y_{pred} = sign\left(\sum_{i} \alpha_{i} y_{i} k(x, x_{i})\right)$$

• Kernel method: do not specify feature map explicitly; instead, define efficiently computable *kernel function*

•
$$K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$

eg polynomial kernel:
$$K(x_i, x_j) = (\langle x_i, x_j \rangle + 1)^p$$
 $\dim \phi \approx (\frac{d+p}{p})^p$ radial basis function (RBF): $K(x_i, x_j) = \exp(-\gamma ||x_i - x_j||_2^2)$ $\dim \phi = \infty$

Quantum kernel methods

• Kernel method: do not specify feature map explicitly; instead, define efficiently computable *kernel function*

•
$$K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$

Quantum feature map:

$$\chi \xrightarrow{\phi} U(x)|o\rangle\langle du(x)^{\dagger}$$

$$K(x_i, x_j) = \left|\langle o|u^{\dagger}(x_j)u(x_i)|o\rangle\right|^2$$

Quantum kernel methods

$$|0\rangle = |\langle o| u^{\dagger}(x_{j}) u(x_{i}) |o\rangle|^{2} \approx \frac{|0\rangle}{|0\rangle} U(x_{i})$$

$$|0\rangle = |0\rangle = |0\rangle$$

$$|0\rangle = |0\rangle = |0\rangle$$

Classical and quantum kernel methods

Classical SVMs

- On input a classical training set
- Compute the kernel function for each pair of training data
- Run dual program, obtain classifier
- Compute the kernel function for new data during testing

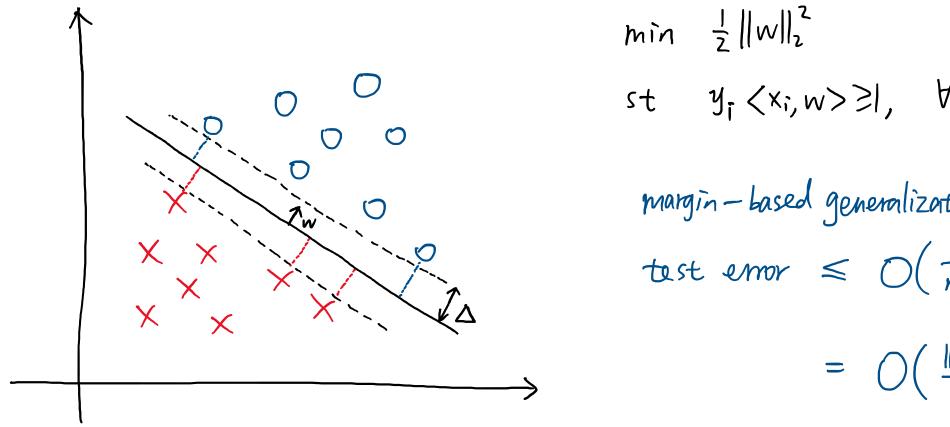
Quantum kernel estimation (SVM-QKE)

- On input a classical training set
- Estimate the quantum kernel function for each pair of training data
- Run dual program, obtain classifier
- Estimate the kernel function for new data during testing
- Expressivity: quantum feature maps are more expressive than classical feature maps
- Finite sampling noise: quantum kernel estimation has 1/poly sampling noise, even with error corrected quantum computer

Result: end-to-end quantum speed-up

- Step 1: construct a learning problem that is hard for classical algorithms
 - Sanity check: this problem should be in BQP
 - We construct a classification problem that is as hard as discrete log
- Step 2: solve this problem using quantum kernel estimation
 - Robust to finite sampling noise
- The learning problem itself is not important, the purpose is to show that SVM-QKE is powerful in general

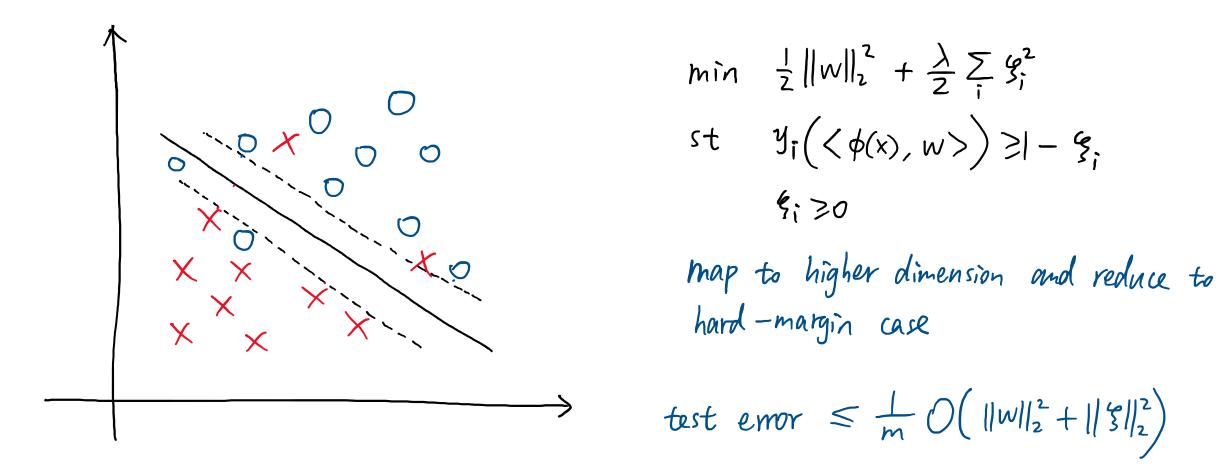
How to prove that kernel methods work?



min
$$\frac{1}{2} ||w||_2^2$$

st $y_i < x_i, w > \ge 1$, $\forall (x_i, y_i) \in S$
margin - based generalization bound:
test error $\le O(\frac{1}{m}S^2)$
 $= O(\frac{||w||_2^2}{m})$

How to prove that kernel methods work?



Key point: large margin observed in training implies good performance in testing

Proof overview

- We explicitly construct a quantum feature map (kernel function) such that training data is separated by a large margin
- Running the dual program with quantum kernel, we are guaranteed to find a good hyperplane
- Use margin-based generalization bound
- Noise robustness can be obtained by strong convexity
 - Small perturbation in the kernel will only cause small perturbation in the classifier

Prospects and obstacles of quantum advantage with QKE

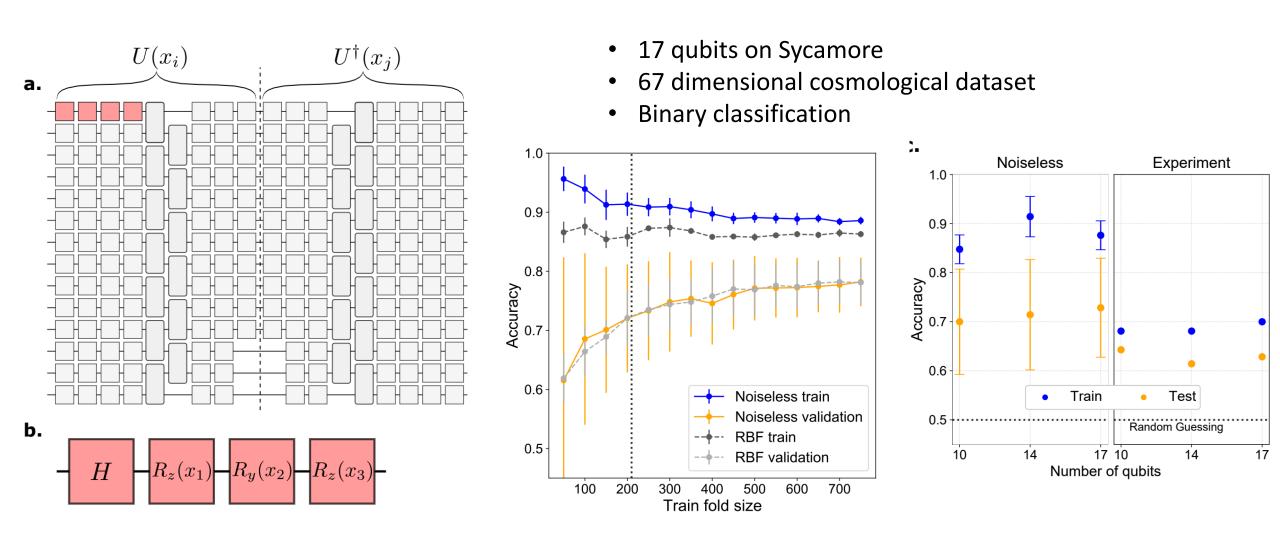
• Future directions:

- Improve our result to BQP-complete
- Find practical learning problems that are challenging for classical algorithms
- Develop "universal" quantum kernels
- Develop error mitigation techniques suitable for QKE

• Obstacles:

- Constant depth 2D circuits do not have asymptotic advantage [BGM'19]
- Already have very powerful classical general-purpose learning algorithms

Recent experiment [Peters et al'21]



Peters et al, Machine learning of high dimensional data on a noisy quantum processor, arxiv: 2101.09581

References

- [Arute et al'19] Quantum supremacy using a programmable superconducting processor, Nature 2019
- [Zhong et al'20] Quantum computational advantage using photons, Science 2020
- [Arute et al'20] Hartree-Fock on a superconducting qubit quantum computer, Science 2020
- [Harrigan et al'21] Quantum approximate optimization of non-planar graph problems on a planar superconducting processor, Nature Physics 2021
- [Peters et al'21] Machine learning of high dimensional data on a noisy quantum processor, arxiv: 2101.09581
- [HHL'09] Quantum Algorithm for Linear Systems of Equations, Physical Review Letters 2009
- [Aaronson'15] Read the fine print, Nature Physics 2015
- [Tang'18] A quantum-inspired classical algorithm for recommendation systems, STOC 2019
- [Havlíček et al'19] Supervised learning with quantum enhanced feature spaces, Nature 2019
- [Schuld et al'19] Quantum machine learning in feature Hilbert spaces, Physical Review Letters 2019
- [BGM'19] Classical algorithms for quantum mean values, Nature Physics 2021