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Exciting developments in NISQ experiments

• Quantum supremacy [Arute et al’19, Zhong et al’20]

• Quantum chemistry [Arute et al’20]
• Combinatorial optimization [Harrigan et al’21]
• Machine learning [Peters et al’21]
• etc…
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This talk: theoretical evidence of
quantum advantage using quantum
kernel methods



Quantum machine learning algorithms

• QRAM-based algorithms [HHL’09, etc…]
• Amplitude encoding: 𝑛 dimensional vector stored in log 𝑛 qubits
• Pros: polylog(𝑛) running time
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Limitations: no provable end-to-end exponential speed-up [Aaronson’15]
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Quantum machine learning algorithms

• QRAM-based algorithms [HHL’09, etc…]
• Amplitude encoding: 𝑛 dimensional vector stored in log 𝑛 qubits
• Pros: polylog(𝑛) running time
• Cons: hard to implement, not end-to-end, dequantization

• Heuristic QML algorithms
• QNN, QGAN, kernel methods, etc…
• Works on classical data
• Pros: can be implemented on near-term hardware
• Cons: lack of evidence for quantum advantage



Results
Quantum kernel methods
[Havlíček et al’19, Schuld et al’19]
• Classical data vectors are

mapped to quantum states via a
quantum feature map
• A linear classifier in Hilbert 

space can be efficiently obtained 
via the kernel method

Our results

• We show this algorithm can
provably solve a classification
problem, and this problem is
hard for all classical algorithms
• Evidence of end-to-end quantum

speed-up
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Support vector machines and kernel methods

Problem: how to do optimization in high dimensional feature space?
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Support vector machines and kernel methods

• Kernel method: do not specify feature map explicitly; instead, define 
efficiently computable kernel function

• 𝐾 𝑥! , 𝑥" = 𝜙 𝑥! , 𝜙(𝑥")



Quantum kernel methods

• Kernel method: do not specify feature map explicitly; instead, define 
efficiently computable kernel function

• 𝐾 𝑥! , 𝑥" = 𝜙 𝑥! , 𝜙(𝑥")
• Quantum feature map:



Quantum kernel methods



Classical and quantum kernel methods

Classical SVMs
• On input a classical training set
• Compute the kernel function for each 

pair of training data
• Run dual program, obtain classifier
• Compute the kernel function for new 

data during testing

Quantum kernel estimation (SVM-QKE)
• On input a classical training set
• Estimate the quantum kernel function 

for each pair of training data
• Run dual program, obtain classifier
• Estimate the kernel function for new 

data during testing

• Expressivity: quantum feature maps are more expressive than classical feature maps
• Finite sampling noise: quantum kernel estimation has 1/poly sampling noise, even 

with error corrected quantum computer



Result: end-to-end quantum speed-up

• Step 1: construct a learning problem that is hard for classical
algorithms
• Sanity check: this problem should be in BQP
• We construct a classification problem that is as hard as discrete log

• Step 2: solve this problem using quantum kernel estimation
• Robust to finite sampling noise

• The learning problem itself is not important, the purpose is to show
that SVM-QKE is powerful in general



How to prove that kernel methods work?



How to prove that kernel methods work?

Key point: large margin observed in training implies good performance in testing



Proof overview

• We explicitly construct a quantum feature map (kernel function) such
that training data is separated by a large margin
• Running the dual program with quantum kernel, we are guaranteed

to find a good hyperplane
• Use margin-based generalization bound
• Noise robustness can be obtained by strong convexity
• Small perturbation in the kernel will only cause small perturbation in the

classifier



Prospects and obstacles of quantum
advantage with QKE
• Future directions:
• Improve our result to BQP-complete
• Find practical learning problems that are challenging for classical algorithms
• Develop “universal” quantum kernels
• Develop error mitigation techniques suitable for QKE

• Obstacles:
• Constant depth 2D circuits do not have asymptotic advantage [BGM’19]
• Already have very powerful classical general-purpose learning algorithms



Recent experiment [Peters et al’21]

Peters et al, Machine learning of high dimensional data on a noisy quantum processor, arxiv: 2101.09581

• 17 qubits on Sycamore
• 67 dimensional cosmological dataset
• Binary classification
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