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Exciting developments in NISQ experiments

* Quantum supremacy [Arute et al’19, Zhong et al’20]

* Quantum chemistry [Arute et al’20]
 Combinatorial optimization [Harrigan et al’21]
* Machine learning [Peters et al’21]

 etc...



Exciting developments in NISQ experiments

* Quantum supremacy [Arute et al’19, Zhong et al’20]

* Quantum chemistry [Arute et al’20]
 Combinatorial optimization [Arute et al’21]
* Machine learning [Peters et al’21]

e etc... \

This talk: theoretical evidence of
guantum advantage using quantum
kernel methods



Quantum machine learning algorithms

* QRAM-based algorithms [HHL'09, etc...]

* Amplitude encoding: n dimensional vector stored in log n qubits
* Pros: polylog(n) running time
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* QRAM-based algorithms [HHL'09, etc...]

input data QML algorithm output

Limitations: no provable end-to-end exponential speed-up [Aaronson’15]



Quantum machine learning algorithms

* QRAM-based algorithms [HHL'09, etc...]

input data QML algorithm output

Limitations: dequantization argument [Tang’18]



Quantum machine learning algorithms

* QRAM-based algorithms [HHL'09, etc...]

* Amplitude encoding: n dimensional vector stored in log n qubits
* Pros: polylog(n) running time
* Cons: hard to implement, not end-to-end, dequantization

* Heuristic QML algorithms
* QNN, QGAN, kernel methods, etc...
* Works on classical data
* Pros: can be implemented on near-term hardware
* Cons: lack of evidence for quantum advantage



Results

Quantum kernel methods
[Havlicek et al’19, Schuld et al’19]

e Classical data vectors are
mapped to quantum states via a
guantum feature map

* A linear classifier in Hilbert
space can be efficiently obtained
via the kernel method

Our results

* We show this algorithm can
provably solve a classification
problem, and this problem is
hard for all classical algorithms

* Evidence of end-to-end quantum
speed-up



Support vector machines and kernel methods
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Support vector machines and kernel methods
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Support vector machines and kernel methods
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Problem: how to do optimization in high dimensional feature space?
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Support vector machines and kernel methods
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Support vector machines and kernel methods
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Support vector machines and kernel methods

* Kernel method: do not specify feature map explicitly; instead, define
efficiently computable kernel function

° K(XL,X]) — <¢(Xl), ¢(X])>

P
ej ?olﬂnom?ml kernel k(’X{, Xf) = ((X.‘, K>+ ,> 0{'\”‘ {)%(0{; r>

mab‘a| bowsis ‘FMnctTOn (RBF) : [((X,‘, Xj) = Q)(]) (- Y I’ X; - XJ.//:) AFM 47,00



Quantum kernel methods

* Kernel method: do not specify feature map explicitly; instead, define
efficiently computable kernel function

° K(XL,X]) — <¢(Xl), ¢(X])>

e Quantum feature map:
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Quantum kernel methods

K, %) = | <o u ) uto [o>]* =

U (x;)

IR

PEIRUIRY




Classical and quantum kernel methods

Classical SVMs Quantum kernel estimation (SVM-QKE)

* On input a classical training set * On input a classical training set

* Compute the kernel function for each ¢ Estimate the quantum kernel function
pair of training data for each pair of training data

* Run dual program, obtain classifier * Run dual program, obtain classifier

* Compute the kernel function for new * Estimate the kernel function for new
data during testing data during testing

* Expressivity: guantum feature maps are more expressive than classical feature maps
* Finite sampling noise: quantum kernel estimation has 1/poly sampling noise, even
with error corrected quantum computer



Result: end-to-end quantum speed-up

 Step 1: construct a learning problem that is hard for classical
algorithms

* Sanity check: this problem should be in BQP
* We construct a classification problem that is as hard as discrete log

* Step 2: solve this problem using quantum kernel estimation
* Robust to finite sampling noise

* The learning problem itself is not important, the purpose is to show
that SVM-QKE is powerful in general



How to prove that kernel methods work?
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How to prove that kernel methods work?
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Key point: large margin observed in training implies good performance in testing



Proof overview

* We explicitly construct a quantum feature map (kernel function) such
that training data is separated by a large margin

* Running the dual program with quantum kernel, we are guaranteed
to find a good hyperplane

* Use margin-based generalization bound

* Noise robustness can be obtained by strong convexity

* Small perturbation in the kernel will only cause small perturbation in the
classifier



Prospects and obstacles of quantum
advantage with QKE

* Future directions:
* Improve our result to BQP-complete
* Find practical learning problems that are challenging for classical algorithms

* Develop “universal” quantum kernels
* Develop error mitigation techniques suitable for QKE

* Obstacles:
e Constant depth 2D circuits do not have asymptotic advantage [BGM’19]

* Already have very powerful classical general-purpose learning algorithms



Recent experiment [Peters et al’21]
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Peters et al, Machine learning of high dimensional data on a noisy quantum processor, arxiv: 2101.09581
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