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Problem definition

Alice
𝜌⊗"

Bob
𝜎⊗"

classical communication

Tr 𝜌𝜎 ≈?
This talk: the optimal sample complexity of this task,
i.e. smallest 𝑘 such that the task is achievable

(unknown)
(unknown)



Some quick thoughts

• Q: What happens if allow quantum communication?
• A: 𝑘 = 𝑂(1/𝜀!) suffices
• Alice sends her copies to Bob
• Bob performs the SWAP test



Some quick thoughts

• Q: Why do we care about Tr(𝜌𝜎)?
• A: Tr(𝜌𝜎) itself doesn’t have much operational meaning, but…
• When one state is pure, Tr 𝜌𝜎 = 𝐹(𝜌, 𝜎)
• Tr(𝜌𝜎) is related to other (non-standard) distance metrics, such as

• Hilbert-Schmidt distance 𝐷!" 𝜌, 𝜎 = Tr((𝜌 − 𝜎)#)
• “geometric mean” fidelity 𝐹$% 𝜌, 𝜎 = &' ()

&' (! &' )!

• These distance metrics are determined by Tr 𝜌𝜎 , Tr 𝜌# , Tr 𝜎#



Some quick thoughts

• Q: Why do we care about estimating Tr(𝜌𝜎) in a distributed setting?
• A: Cross-platform verification [Elben et al’20]

How do we compare our unknown quantum states
that live on different physical platforms?



Problem definition

Alice
𝜌⊗"

Bob
𝜎⊗"

classical communication

Tr 𝜌𝜎 ≈?
This talk: the optimal sample complexity of this task,
i.e. smallest 𝑘 such that the task is achievable

Probably depends on the model of measurement
and communication?



Measurement models

𝜌 ℳ 𝜌

ℳ
𝜌
𝜌
𝜌
𝜌

Single-copy measurements
Requires Θ(𝑑-) copies for tomography

Multi-copy measurements
Requires Θ(𝑑!) copies for tomography

𝜌 ℳ

𝜌 ℳ



Communication models

interactive communication

one-way communication

simultaneous message passing



Result

• A priori the above 2×3 = 6 models could lead to different sample
complexity for the task, but we show this is not the case
• Theorem. The optimal sample complexity for distributed quantum

inner product estimation is

• 𝑘 = Θ(max{ .
/!
, 0
/
})

• across all measurement and communication models

• When 𝜀 is constant, this gives 𝑘 = Θ(21/!) (n=#qubits)



Discussion

• Theorem. The optimal sample complexity for distributed quantum
inner product estimation is 𝑘 = Θ(max{ .

/!
, 0
/
}) across all

measurement and communication models

• Regarding the cross-platform verification [Elben et al’20] task, we
conclude that it requires less samples than tomography
• But still requires exponential samples (in #qubits), even with the most

powerful measurements



Discussion

• Theorem. The optimal sample complexity for distributed quantum
inner product estimation is 𝑘 = Θ(max{ .

/!
, 0
/
}) across all

measurement and communication models

• Shadow tomography [Aaronson’18]: linear functions of an unknown
quantum state can be estimated sample-efficiently
• But our task is not sample-efficient… because the classical

communication constraint seems to be a barrier for sample-efficiency



Discussion

• Theorem. The optimal sample complexity for distributed quantum
inner product estimation is 𝑘 = Θ(max{ .

/!
, 0
/
}) across all

measurement and communication models

• Besides tomography, many examples are known which demonstrate
large separation between single and multi-copy measurements for
single-system property testing [BCL’20; ACQ’21; CCHL’21]
• But in our distributed setting, access to multi-copy measurements

does not provide an advantage



Only need to prove two bounds

• Using single-copy measurements and simultaneous message passing,
Alice and Bob can estimate inner product with 𝑘 = 𝑂(max{ .

/!
, 0
/
})

copies

• Even with multi-copy measurements and interactive communication,
Alice and Bob require at least 𝑘 = Ω(max{ .

/!
, 0
/
}) copies to estimate

inner product



The upper bound

• Using single-copy measurements and simultaneous message passing,
Alice and Bob can estimate inner product with 𝑘 = 𝑂(max{ .

/!
, 0
/
})

copies

• Idea: reduce quantum inner product to classical inner product using
“correlated” classical shadows



Warm-up: how to estimate the inner product
of two probability distributions?
• We can draw i.i.d. samples from two 𝑑-dim distributions 𝑝, 𝑞
• Want to estimate 𝑓 = ∑34506. 𝑝3 > 𝑞3

• Draw 𝑚 samples 𝑥., … , 𝑥7~𝑝, 𝑦., … , 𝑦7~𝑞

• Collision estimator: output .
7!∑8,94.

7 1[𝑥8 = 𝑦9]

• Example: {101,111,010,101}, {110,000,101,111}
• Output=(1+1+0+1)/16=0.1875



Proof sketch

1. Sample a random unitary 𝑈
2. Apply 𝑈 to each copy of my
state
3. Measure each copy in the
computational basis, obtain
bit strings 𝐴 = (𝑎!, … , 𝑎")

1. Sample a random unitary 𝑈
2. Apply 𝑈 to each copy of my
state
3. Measure each copy in the
computational basis, obtain
bit strings 𝐵 = (𝑏!, … , 𝑏")

Shared randomness

Count #collisions between 𝐴 and 𝐵
(Collision estimator)
Output a function of #collisions



Intuition

• To prove the sample complexity bound, we need to calculate the
variance of the above estimator…
• Why is 𝑂( 𝑑) the correct bound?
• Intuition: birthday paradox: expect to see collisions after drawing
𝑘 = 𝑂( 𝑑) samples from a 𝑑-dim uniform distribution
• Alice and Bob’s measurement outcome distributions are close to

uniform
• When 𝑘 = 𝑜( 𝑑), never see any collision
• When 𝑘 = 𝑂( 𝑑), see more collisions when inner product is large; fewer

collisions when inner product is small



The lower bound

• Even with multi-copy measurements and interactive communication,
Alice and Bob require at least 𝑘 = Ω(max{ .

/!
, 0
/
}) copies to estimate

inner product



Proof sketch: focus on a simpler problem

| ⟩𝜙 ⊗" | ⟩𝜙 ⊗"

| ⟩𝜙 ⊗" | ⟩𝜓 ⊗"

| ⟩𝜙 ~ℂ+
(Haar measure)

5 ⟩𝜙 , | ⟩𝜓 ~ℂ+
(Haar measure)

Which case are we in?



The lower bound

• Even with multi-copy measurements and interactive communication,
Alice and Bob require at least 𝑘 = Ω( 𝑑) copies to decide

• Idea: symmetric subspace



Proof sketch

| ⟩𝜙 ⊗" | ⟩𝜙 ⊗"

| ⟩𝜙 ⊗" | ⟩𝜓 ⊗"

| ⟩𝜙 ~ℂ+

5 ⟩𝜙 , | ⟩𝜓 ~ℂ+

Which case are we in?



Symmetric subspace

No matter which case, Alice (and Bob)’s state is of the form | ⟩𝜙 ⊗-

Symmetric subspace:
∨- ℂ+ = | ⟩𝜔 ∈ ℂ+ ⊗-: 𝑃 𝜋 | ⟩𝜔 = | ⟩𝜔 , ∀𝜋 ∈ 𝑆-

∨- ℂ+ = span | ⟩𝜙 ⊗-: | ⟩𝜙 ∈ℂ+

POVM in the symmetric subspace: ∑.𝑀. = Π/01
”standard POVM” in the symmetric subspace: 

𝑑 + 𝑘 − 1
𝑘

| ⟩𝑢 ⟨ |𝑢 ⊗-d𝑢

[Harrow’13] The Church of the Symmetric Subspace



Warm-up: “partial” tomography?

• Alice performs ”standard POVM” in the symmetric subspace, gets
result | ⟩𝑢
• Bob performs ”standard POVM” in the symmetric subspace, gets

result | ⟩𝑣
• They compute a function of | ⟩𝑢 and | ⟩𝑣 (can be implemented with

simultaneous message passing)

• How many copies does this algorithm require? 𝑘 = 𝑂( 𝑑)
• This gives evidence that Alice and Bob cannot do better than 𝑂( 𝑑)



Consider one-way protocol

𝑖

Perform POVM 𝑀. ,
obtain result 𝑖

Which case are we in?



Consider one-way protocol

Which case are we in?

• Case 1 (same state): Bob’s state gets updated after seeing 𝑖

• 𝜌 =
"#$%&

$
:; <'=()*

𝔼| ⟩@ ~ℂ" Tr(𝑀C| ⟩𝜙 ⟨ |𝜙 ⊗9)| ⟩𝜙 ⟨ |𝜙 ⊗9

• Case 2 (independent state): Bob’s state is always the
“maximally mixed state”

• 𝜎E = =()*
"#$%&

$

• Result: when 𝑘 = 𝑜( 𝑑), they are indistinguishable



Proof of indistinguishability

• 𝜌 =
!"#$%

#

23 4&5'()
𝔼| ⟩8 ~ℂ! Tr(𝑀.| ⟩𝜙 ⟨ |𝜙 ⊗-)| ⟩𝜙 ⟨ |𝜙 ⊗- is indistinguishable from

𝜎1 = 5'()
!"#$%

#
when 𝑘 = 𝑜( 𝑑)

• Proof: think about the “measure-and-prepare” channel

• MP 𝜏 = +;-<=
- 𝔼| ⟩8 ~ℂ! Tr(𝜏 Q | ⟩𝜙 ⟨ |𝜙 ⊗-)| ⟩𝜙 ⟨ |𝜙 ⊗-

• Using Chiribella’s theorem [Chiribella’11], we show that the output of MP is
indistinguishable from 𝜎1 regardless of the input, when 𝑘 = 𝑜 𝑑
• Can be generalized to a lower bound against arbitrary interactive communication



Discussion

• Theorem. The optimal sample complexity for distributed quantum
inner product estimation is 𝑘 = Θ(max{ .

/!
, 0
/
}) across all

measurement and communication models

• What happens when allow a small amount (say 𝑂(log 𝑛) qubits) of
quantum communication?
• Upper and lower bounds for other distributed quantum property 

estimation problems?


