Distributed quantum inner product estimation

Yunchao Liu (UC Berkeley)

Joint work with Anurag Anshu (Harvard) and Zeph Landau (UC Berkeley)

arxiv: 2111.03273

Problem definition

Some quick thoughts

- Q: What happens if allow quantum communication?
- A: $k = O(1/\epsilon^2)$ suffices
 - Alice sends her copies to Bob
 - Bob performs the SWAP test

Some quick thoughts

- Q: Why do we care about $Tr(\rho\sigma)$?
- A: $Tr(\rho\sigma)$ itself doesn't have much operational meaning, but...
 - When one state is pure, $Tr(\rho\sigma) = F(\rho, \sigma)$
 - ${\rm Tr}(\rho\sigma)$ is related to other (non-standard) distance metrics, such as
 - Hilbert-Schmidt distance $D_{HS}(\rho, \sigma) = \sqrt{\text{Tr}((\rho \sigma)^2)}$
 - "geometric mean" fidelity $F_{GM}(\rho,\sigma) = \frac{{
 m Tr}(\rho\sigma)}{\sqrt{{
 m Tr}(\rho^2){
 m Tr}(\sigma^2)}}$
 - These distance metrics are determined by ${\rm Tr}(\rho\sigma)$, ${\rm Tr}(\rho^2)$, ${\rm Tr}(\sigma^2)$

Some quick thoughts

- Q: Why do we care about estimating $Tr(\rho\sigma)$ in a distributed setting?
- A: Cross-platform verification [Elben et al'20]

Problem definition

Measurement models

Single-copy measurements Requires $\Theta(d^3)$ copies for tomography

Multi-copy measurements Requires $\Theta(d^2)$ copies for tomography

Communication models

Result

- A priori the above $2\times3=6$ models could lead to different sample complexity for the task, but we show this is not the case
- **Theorem.** The optimal sample complexity for distributed quantum inner product estimation is

•
$$k = \Theta(\max\{\frac{1}{\varepsilon^2}, \frac{\sqrt{d}}{\varepsilon}\})$$

across all measurement and communication models

• When ε is constant, this gives $k = \Theta(2^{n/2})$ (n=#qubits)

- Regarding the cross-platform verification [Elben et al'20] task, we conclude that it requires less samples than tomography
- But still requires exponential samples (in #qubits), even with the most powerful measurements

- Shadow tomography [Aaronson'18]: linear functions of an unknown quantum state can be estimated sample-efficiently
- But our task is not sample-efficient... because the classical communication constraint seems to be a barrier for sample-efficiency

- Besides tomography, many examples are known which demonstrate large separation between single and multi-copy measurements for single-system property testing [BCL'20; ACQ'21; CCHL'21]
- But in our distributed setting, access to multi-copy measurements does not provide an advantage

Only need to prove two bounds

• Using single-copy measurements and simultaneous message passing, Alice and Bob can estimate inner product with $k=O(\max\{\frac{1}{\varepsilon^2},\frac{\sqrt{d}}{\varepsilon}\})$ copies

• Even with multi-copy measurements and interactive communication, Alice and Bob require at least $k=\Omega(\max\{\frac{1}{\varepsilon^2},\frac{\sqrt{d}}{\varepsilon}\})$ copies to estimate inner product

The upper bound

• Using single-copy measurements and simultaneous message passing, Alice and Bob can estimate inner product with $k=O(\max\{\frac{1}{\varepsilon^2},\frac{\sqrt{d}}{\varepsilon}\})$ copies

 Idea: reduce quantum inner product to classical inner product using "correlated" classical shadows

Warm-up: how to estimate the inner product of two probability distributions?

- We can draw i.i.d. samples from two d-dim distributions p, q
- Want to estimate $f = \sum_{x=0}^{d-1} p_x \cdot q_x$
- Draw m samples $x_1, \dots, x_m \sim p, y_1, \dots, y_m \sim q$
- Collision estimator: output $\frac{1}{m^2} \sum_{j,k=1}^m \mathbb{1}[x_j = y_k]$
- Example: {101,111,010,101}, {110,000,101,111}
- Output=(1+1+0+1)/16=0.1875

Proof sketch

Shared randomness

- 1. Sample a random unitary *U*
- 2. Apply *U* to each copy of my state
- 3. Measure each copy in the computational basis, obtain bit strings $A = (a_1, ..., a_k)$

- 1. Sample a random unitary *U*
- 2. Apply *U* to each copy of my state
- 3. Measure each copy in the computational basis, obtain bit strings $B = (b_1, ..., b_k)$

Count #collisions between A and B (Collision estimator)

Output a function of #collisions

Intuition

- To prove the sample complexity bound, we need to calculate the variance of the above estimator...
- Why is $O(\sqrt{d})$ the correct bound?
- Intuition: birthday paradox: expect to see collisions after drawing $k = O(\sqrt{d})$ samples from a d-dim uniform distribution
- Alice and Bob's measurement outcome distributions are close to uniform
 - When $k = o(\sqrt{d})$, never see any collision
 - When $k = O(\sqrt{d})$, see more collisions when inner product is large; fewer collisions when inner product is small

The lower bound

• Even with multi-copy measurements and interactive communication, Alice and Bob require at least $k=\Omega(\max\{\frac{1}{\varepsilon^2},\frac{\sqrt{d}}{\varepsilon}\})$ copies to estimate inner product

Proof sketch: focus on a simpler problem

The lower bound

• Even with multi-copy measurements and interactive communication, Alice and Bob require at least $k=\Omega(\sqrt{d})$ copies to decide

Idea: symmetric subspace

Proof sketch

Symmetric subspace

No matter which case, Alice (and Bob)'s state is of the form $\ket{\phi}^{\bigotimes k}$

Symmetric subspace:

$$\nabla^{k} \mathbb{C}^{d} = \left\{ |\omega\rangle \in (\mathbb{C}^{d})^{\otimes k} : P(\pi)|\omega\rangle = |\omega\rangle, \forall \pi \in S_{k} \right\}$$
$$\nabla^{k} \mathbb{C}^{d} = \operatorname{span} \left\{ |\phi\rangle^{\otimes k} : |\phi\rangle \in \mathbb{C}^{d} \right\}$$

POVM in the symmetric subspace: $\sum_i M_i = \Pi_{\text{sym}}$ "standard POVM" in the symmetric subspace:

$$\left\{ \binom{d+k-1}{k} |u\rangle\langle u|^{\otimes k} du \right\}$$

Warm-up: "partial" tomography?

- Alice performs "standard POVM" in the symmetric subspace, gets result $|u\rangle$
- Bob performs "standard POVM" in the symmetric subspace, gets result $|v\rangle$
- They compute a function of $|u\rangle$ and $|v\rangle$ (can be implemented with simultaneous message passing)
- How many copies does this algorithm require? $k = O(\sqrt{d})$
- This gives evidence that Alice and Bob cannot do better than $O(\sqrt{d})$

Consider one-way protocol

Consider one-way protocol

Case 1 (same state): Bob's state gets updated after seeing i

•
$$\rho = \frac{\binom{d+k-1}{k}}{\operatorname{Tr}(M_i\Pi_{\text{sym}})} \mathbb{E}_{|\phi\rangle\sim\mathbb{C}^d} \operatorname{Tr}(M_i|\phi\rangle\langle\phi|^{\otimes k}) |\phi\rangle\langle\phi|^{\otimes k}$$

 Case 2 (independent state): Bob's state is always the "maximally mixed state"

•
$$\sigma_{\rm m} = \frac{\Pi_{\rm sym}}{\binom{d+k-1}{k}}$$

Which case are we in?

• Result: when $k = o(\sqrt{d})$, they are indistinguishable

Proof of indistinguishability

•
$$\rho = \frac{\binom{d+k-1}{k}}{\mathrm{Tr}(M_i\Pi_{\mathrm{sym}})} \mathbb{E}_{|\phi\rangle \sim \mathbb{C}^d} \, \mathrm{Tr}(M_i|\phi\rangle\langle\phi|^{\bigotimes k}) |\phi\rangle\langle\phi|^{\bigotimes k}$$
 is indistinguishable from $\sigma_{\mathrm{m}} = \frac{\Pi_{\mathrm{sym}}}{\binom{d+k-1}{k}}$ when $k = o(\sqrt{d})$

- Proof: think about the "measure-and-prepare" channel
- $MP(\tau) = {d+k-1 \choose k} \mathbb{E}_{|\phi\rangle \sim \mathbb{C}^d} \operatorname{Tr}(\tau \cdot |\phi\rangle \langle \phi|^{\bigotimes k}) |\phi\rangle \langle \phi|^{\bigotimes k}$
- Using Chiribella's theorem [Chiribella'11], we show that the output of MP is indistinguishable from $\sigma_{\rm m}$ regardless of the input, when $k=o\left(\sqrt{d}\right)$
- Can be generalized to a lower bound against arbitrary interactive communication

- What happens when allow a small amount (say $O(\log n)$ qubits) of quantum communication?
- Upper and lower bounds for other distributed quantum property estimation problems?