Distributed quantum inner
product estimation

Yunchao Liu (UC Berkeley)
Joint work with Anurag Anshu (Harvard) and Zeph Landau (UC Berkeley)

arxiv: 2111.03273



Problem definition

classical communication BOb

Alice >
7 pOK > gk

(u’nknown)

~ - -
-

This talk: the optimal sample complexity of this task,
i.e. smallest k such that the task is achievable




Some quick thoughts

* Q: What happens if allow quantum communication?
* A: k = 0(1/£?) suffices

* Alice sends her copies to Bob
* Bob performs the SWAP test
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Some quick thoughts

* Q: Why do we care about Tr(po)?

* A: Tr(po) itself doesn’t have much operational meaning, but...
* When one state is pure, Tr(pog) = F(p, 0)
* Tr(po) is related to other (non-standard) distance metrics, such as

* Hilbert-Schmidt distance Dys(p, o) = /Tr((p — 0)?)
Tr(po)
JTr(p?)Tr(o?)
* These distance metrics are determined by Tr(pa), Tr(p?), Tr(c?)

* “geometric mean” fidelity F;p(p,0) =




Some quick thoughts

* Q: Why do we care about estimating Tr(po) in a distributed setting?
* A: Cross-platform verification [Elben et al’20]

How do we compare our unknown quantum states
that live on different physical platforms?

SWAP




Problem definition

classical communication BO b
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This talk: the optimal sample complexity of this task,
i.e. smallest k such that the task is achievable

Probably depends on the model of measurement
and communication?




Measurement models
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Single-copy measurements Multi-copy measurements
Requires ©(d?) copies for tomography Requires ©(d?) copies for tomography



Communication models
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Result

* A priori the above 2X3 = 6 models could lead to different sample
complexity for the task, but we show this is not the case

* Theorem. The optimal sample complexity for distributed quantum
inner product estimation is
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* k = O(max{

e across all measurement and communication models

* When ¢ is constant, this gives k = ©(2™/?) (n=#qubits)



Discussion

* Theorem. The optimal sample complexity for distributed quantum

. . 1
inner product estimation is k = @(max{g—z,

measurement and communication models

d
g}) across all

* Regarding the cross-platform verification [Elben et al’20] task, we
conclude that it requires less samples than tomography

 But still requires exponential samples (in #qubits), even with the most
powerful measurements



Discussion

* Theorem. The optimal sample complexity for distributed quantum

. . 1
inner product estimation is k = @(max{g—z,

measurement and communication models

d
g}) across all

* Shadow tomography [Aaronson’18]: linear functions of an unknown
guantum state can be estimated sample-efficiently

* But our task is not sample-efficient... because the classical
communication constraint seems to be a barrier for sample-efficiency



Discussion

* Theorem. The optimal sample complexity for distributed quantum

. . 1
inner product estimation is k = @(max{g—z,

measurement and communication models

d
g}) across all

* Besides tomography, many examples are known which demonstrate
large separation between single and multi-copy measurements for
single-system property testing [BCL'20; ACQ’21; CCHL 21]

* But in our distributed setting, access to multi-copy measurements
does not provide an advantage



Only need to prove two bounds

* Using single-copy measurements and simultaneous message passing,
. : . : 1 +d
Alice and Bob can estimate inner product with k = O(max{g—z,\/?—})

copies

* Even with multi-copy measurements and interactive communication,

1 +d

. . d . .
Alice and Bob require at least k = Q(max{g—z, ?}) copies to estimate

inner product



The upper bound

* Using single-copy measurements and simultaneous message passing,
. : . : 1 +d
Alice and Bob can estimate inner product with k = O(max{g—z,\/?—})

copies

* |dea: reduce quantum inner product to classical inner product using
“correlated” classical shadows



Warm-up: how to estimate the inner product
of two probability distributions?

* We can draw i.i.d. samples from two d-dim distributions p, g

* Want to estimate f = chl;é Dx * Gy

e Draw m samp|eS X1y oo Xim~P,» Y1, - Ym~q

1 om

* Collision estimator: output — 2 k=1 1[x; = yi]

* Example: {101,111,010,101}, {110,000,101,111}
e Qutput=(1+1+0+1)/16=0.1875



Proof sketch

Shared randomness

/\

1. Sample a random unitary U 1. Sample a random unitary U

2. Apply U to each copy of my 2. Apply U to each copy of my
~ state state

3. Measure each copy in the 3. Measure each copy in the

computational basis, obtain computational basis, obtain

bit strings A = (a4, ..., a) bit strings B = (b, ..., by)

Count #collisions between A and B
(Collision estimator)
Output a function of #collisions




Intultion

* To prove the sample complexity bound, we need to calculate the
variance of the above estimator...

* Why is 0(+/d) the correct bound?

* Intuition: birthday paradox: expect to see collisions after drawing
k = 0(+/d) samples from a d-dim uniform distribution

e Alice and Bob’s measurement outcome distributions are close to
uniform

« When k = o(¥/d), never see any collision

* When k = 0(Vd), see more collisions when inner product is large; fewer
collisions when inner product is small



The lower bound

* Even with multi-copy measurements and interactive communication,

1

Alice and Bob require at least k = Q(max{g—z, \/?d—}) copies to estimate

inner product



Proof sketch: focus on a simpler problem

Xk ~c
P |¢> (Haz:|1§br>ne§sure)

Which case are we in?

| ¢)®k ), [y)~c*

(Haar measure)




The lower bound

* Even with multi-copy measurements and interactive communication,
Alice and Bob require at least k = Q(+/d) copies to decide

* Idea: symmetric subspace



Proof sketch
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Symmetric subspace

No matter which case, Alice (and Bob)’s state is of the form |¢)®k

_ Symmetric subspace:
vk Ce = span{|¢)®k: |p) E(Cd}

POVM in the symmetric subspace: »; M; = Ilgymy
“standard POVM” in the symmetric subspace:

(7 mowi®ad

[Harrow’13] The Church of the Symmetric Subspace
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Warm-up: “partial” tomography?

* Alice performs “"standard POVM” in the symmetric subspace, gets
result |u)

* Bob performs “standard POVM” in the symmetric subspace, gets
result [v)

* They compute a function of |u) and |v) (can be implemented with
simultaneous message passing)

 How many copies does this algorithm require? k = 0(v/d)
* This gives evidence that Alice and Bob cannot do better than 0(+/d)



Consider one-way protocol

Perform POVM {M;},
obtain result i

p ;

Which case are we in?



Consider one-way protocol

* Case 1 (same state): Bob’s state gets updated after seeing i

= ( k_) E|¢)~@dTr(Mi|¢><¢|®k)|§b><¢|®k

~ Tr(Mlsym)

* p

* Case 2 (independent state): Bob’s state is always the
“maximally mixed state”
. _ Msym
Om = (d+k—1)
k Which case are we in?

* Result: when k = o(v/d), they are indistinguishable




Proof of indistinguishability

e p = Tr((:’;;)m) IE|¢> ca Tr(M; |¢)(¢|®k)|q§)(qb|® is indistinguishable from

Om = (df,fml) when k = o(v/d)

k

Proof: think about the “measure-and-prepare” channel

MP(7) = (“*})E 4 ca Tr(T - e} ©) )| "

Using Chiribella’s theorem [Chiribella’11], we show that the output of MP is
indistinguishable from oy, regardless of the input, when k = 0(\/3)

Can be generalized to a lower bound against arbitrary interactive communication



Discussion

* Theorem. The optimal sample complexity for distributed quantum

. . 1 Vd
inner product estimation is k = @(max{g—z,g}) across all

measurement and communication models

* What happens when allow a small amount (say O(log n) qubits) of
guantum communication?

* Upper and lower bounds for other distributed quantum property
estimation problems?



