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Quantum computational advantage: what’s next?

• Demonstrate computational advantage on new physical platforms
• E.g. analog devices

• Develop quantum algorithms toward useful quantum advantage
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Here’s a quantum algorithm

A quantum system is coupled to a thermal bath at finite (constant) inverse-
temperature 𝛽

1. Engineer the system in a desired Hamiltonian𝐻
2. Wait for the system to converge to its Gibbs state

𝜌! ∝ 𝑒"!#
3. Measure in the standard basis, obtain sample

Think of actually implementing this process, as well as simulating it on a
quantum computer

This talk: complexity theoretic evidence of quantum computational advantage in
this model
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system bath



What makes this challenging?

● At high enough temperatures, sampling from Gibbs states is classically
simulable

○ “High-Temperature Gibbs States are Unentangled”

● At low enough temperatures, this task is hard in general even for 
quantum computers

○ At least NP-hard due to classical PCP theorem
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Hamiltonians which are “classically hard, but quantumly easy” are a sweet spot:
How to make it classically hard, but not too hard?



Construction: the second simplest example you can think of
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• Classically, hard to sample from Gibbs state: uses hardness of 
shallow quantum circuits + fault tolerance

• Quantumly, thermalization process is rapidly mixing: uses lightcone
structure of shallow quantum circuits 

• This is an example of a “sweet spot”

Shallow quantum circuit



Efficiently samplable, but classically intractable Gibbs states
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Theorem. There exists a family of 𝑛 qubit, 𝑂(1) local Hamiltonians at any finite 
temperature 𝛽, which is
• Rapidly thermalizing (and thus efficiently samplable), in time 𝑛$(&)

Can be simulated on a quantum computer in time 𝑛&($(&)
• Classically intractable under standard complexity-theoretic assumptions 

Task: Given a local Hamiltonian 𝐻 & an inverse-temperature 𝛽, approximately sample from 



Our approach
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Goal: construct a family of local Hamiltonians, which is both

Classically Intractable by embedding computation into its Gibbs state 

- Gibbs states are typically “noisy” versions of the ground state.

- Use fault tolerance to correct the “noise”

Rapidly Thermalizing i.e. converging to the Gibbs state in less than polynomial time

- Can be quite challenging, even in commuting systems



Parent Hamiltonians of shallow quantum circuits

Starting with a non-interacting system,

Consider the class of “parent” Hamiltonians 
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Nice Properties: Local, commuting, integer spectra, and its ground-state is 



The input noise model
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Their Gibbs state resembles a noisy version of the circuit  



The input noise model
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Their Gibbs state resembles a noisy version of the circuit  

Note



The input noise model
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Their Gibbs state resembles a noisy version of the circuit  

Note



The input noise model
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Their Gibbs state resembles a noisy version of the circuit  

[BMS16] Many classically-hard shallow circuits become simulable under input noise 

Need to embed some form of fault-tolerance into the circuit



Outline
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I. Efficient Gibbs sampling 

II.   Fault tolerance of IQP circuits 

Rapid mixing bounds for Lindbladians, 
via lightcone arguments

Designing fault-tolerant circuits which are 
hard-to-sample from under input noise



Thermalization

1. What do we mean by “a system is coupled to a bath”, or “put a 
quantum system in a fridge”

2. What is needed to prove rapid mixing for thermalization

3. How to prove it for our Hamiltonians

4. (skipped) How to simulate this process on a digital quantum computer
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“A system is coupled to a bath”

● System and bath in a joint unitary evolution
● Trace out the bath, focus on the system dynamics
● Described by a specific Lindbladian called “Davies generator”

● Intuition: a continuous-time quantum Markov chain, jumping 
around in the system Hamiltonian eigenbasis

● No matter the initial state, the system always converges to 
the Gibbs state 𝜌! ∝ 𝑒"!#

○ Need to bound mixing time: how fast does it converge
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system bath



Thermal Lindbladians and Davies Generators
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A set of jump operators

And transition weights 



Thermal Lindbladians and Davies Generators
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A set of jump operators

And transition weights 

Define a Davies Generator 



Thermal Lindbladians and Davies Generators
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A set of jump operators

And transition weights 

Define a Davies Generator 

Where  
jumping between the Hamiltonian eigenbasis



Detailed balance of Davies generators
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Under modest constraints, the DG satisfies detailed balance 

That is, it converges to the Gibbs state, but it may not converge quickly.

The Davies Generator defines a continuous-time dynamics



Convergence time of Lindbladian evolution
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Standard approach is a bound on the spectral gap,

The mixing time is the smallest time 𝑡 for which 

However, inherently comes at a polynomial overhead in system size



(Modified) Log Sobolev Inequalities (MLSI)
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A MLSI quantifies the rate of decay of the relative entropy
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A MLSI quantifies the rate of decay of the relative entropy

[KT13] If there exists a constant 𝛼 s.t.,
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(Modified) Log Sobolev Inequalities (MLSI)
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A MLSI quantifies the rate of decay of the relative entropy

[KT13] If there exists a constant 𝛼 s.t.,

Then, by Pinsker’s inequality,  Rapid Mixing



Next: Modified Log Sobolev Inequality for our Hamiltonians
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idea: prove this for the trivial Hamiltonian, then “inherit” 
this to our Hamiltonians using lightcone arguments



Step 1: The non-interacting system
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Jump operators are just single qubit Paulis, and the Lindbladian is non-interacting

Claim satisfies a MLSI with constant  

Let’s first consider the trivial Hamiltonian



Step 2: “Inherit” the mixing time
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Goal: Can we inherit the fast mixing of the non-interacting case?  

Idea: Our Hamiltonian is just a rotation of the trivial Hamiltonian;
The Lindbladian is quite complicated, but we can look at it in a rotated basis



Step 2: “Inherit” the mixing time
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Goal: Can we inherit the fast mixing of the non-interacting case?  

Idea: In a rotated basis, our Lindbladian is a convex combination of D.G.s: 

which satisfy detailed balance, and 

is quite complicated, but at least it fixes the Gibbs state



Step 2: “Inherit” the mixing time
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Goal: Can we inherit the fast mixing of the non-interacting case?  

Idea: In a rotated basis, our Lindbladian is a convex combination of D.G.s: 

which satisfy detailed balance, and 

Claim: This gives us a MLSI for ℒ, with constant Ω(4"ℓ𝑒"%!)



Finally: How do we prove the convex combination?
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Goal



Proof by picture
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Goal



Proof by picture
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Goal

Suffices to look at the jump operators in the Hamiltonian eigenbasis
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Goal

Suffices to look at the jump operators in the Hamiltonian eigenbasis

Proof by picture
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Goal

Suffices to look at the jump operators in the Hamiltonian eigenbasis

Proof by picture
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Proof by picture
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Proof by picture
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Proof by picture
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Proof by picture

In plain English, the second moment of the jump operators is a convex 
combination of two sets of jump operators

non-interacting system rest



Outline
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I. Efficient Gibbs sampling 

II.   Fault tolerance of IQP circuits 

Key idea: “Inherit” the mixing time from trivial system

Designing fault-tolerant circuits which are 
hard-to-sample from under input noise

Rapid mixing bounds for Lindbladians, 
via light-cone arguments



Our approach
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Goal: Construct a low-depth quantum circuit, hard to sample from under input noise

Idea: Start from shallow IQP circuits, and then make them fault tolerant



Hardness of shallow IQP circuits
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Goal: Construct a low-depth quantum circuit, hard to sample from under input noise

Idea: Start from shallow IQP circuits, and then make them fault tolerant

D: diagonal gates (Z, CZ and T gates), all commuting

Hardness of ideal IQP circuits: [GWD16, BHS+16] There is a family of 
shallow IQP circuits which is hard to sample within constant TVD, 
assuming the average-case hardness of computing certain partition 
functions
Becomes classically simulable under noise [BMS16]



Hardness of shallow IQP circuits
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Goal: Construct a low-depth quantum circuit, hard to sample from under input noise

Idea: Start from shallow IQP circuits, and then make them fault tolerant

D: diagonal gates (Z, CZ and T gates), all commuting

Want hardness? Need fault tolerance!



Fault tolerance for shallow IQP circuits
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Lemma Fix a noise rate p < 1. Every IQP circuit can be encoded into a slightly bigger 
circuit, s.t. the new circuit is robust to input noise



Fault tolerance for shallow IQP circuits
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Lemma Fix a noise rate p < 1. Every IQP circuit can be encoded into a slightly bigger 
circuit, s.t. the new circuit is robust to input noise

The depth, 



Fault tolerance for shallow IQP circuits

45

Lemma Fix a noise rate p < 1. Every IQP circuit can be encoded into a slightly bigger 
circuit, s.t. the new circuit is robust to input noise

The depth, the lightcone size, 



Fault tolerance for shallow IQP circuits
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Lemma Fix a noise rate p < 1. Every IQP circuit can be encoded into a slightly bigger 
circuit, s.t. the new circuit is robust to input noise

The depth, the lightcone size, and the Hamiltonian locality are slightly increased

We have a local Hamiltonian, because the 𝑍-propagation in the encoded circuit is local (Joel 
Rajakumar & James Watson)



Basic idea: we take a bunch of noisy 0’s, 
compute the majority, get a less noisy 0.
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How to deal with input noise?



Fault tolerance construction
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1. Place a gadget on each of 𝑛 input qubits.

2. Input one “root” qubit per gadget into 𝐶.

All we need to do is distill clean input qubits.

Idea 1 Suffices to detect the input error, 
instead of correcting it

Idea 2 Recursive state distillation

To achieve this at low overhead…



Fault tolerance of IQP circuits (against input noise)
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Idea 1. It suffices to detect the input error, instead of correcting it.  



Fault tolerance of IQP circuits (against input noise)
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Suppose at the end of the computation, we knew that initially there were 𝑋 errors on 
qubits 1, 2 and 5 …

Idea 1. It suffices to detect the input error, instead of correcting it.  



Fault tolerance of IQP circuits (against input noise)
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qubits 1, 2 and 5 …



Fault tolerance of IQP circuits (against input noise)
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Idea 1. It suffices to detect the input error, instead of correcting it.  

Suppose at the end of the computation, we knew that initially there were 𝑋 errors on 
qubits 1, 2 and 5 …



Fault tolerance of IQP circuits (against input noise)
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Idea 1. It suffices to detect the input error, instead of correcting it.  

Suppose at the end of the computation, we knew that initially there were 𝑋 errors on 
qubits 1, 2 and 5 …



Fault tolerance of IQP circuits (against input noise)
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Idea 1. It suffices to detect the input error, instead of correcting it.  

Equivalent to bit-flip errors on the output string, which we can correct classically



Fault tolerance construction
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All we need to do is distill clean input qubits.

Idea 1 Suffices to detect the input error, 
instead of correcting it

Idea 2 Recursive state distillation

To achieve this at low overhead…

Next: how to detect, and how to further reduce overhead using recursion

Deferring the decoding overhead into classical 
postprocessing
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Error detection

• Every black dot is a noisy bit (ideally 0, 
could be flipped to 1)

• Apply CNOT from root to every leaf
• Majority of leaves equals root whp

• Compute Majority at the end of the 
computation

• If there was an error on the root, it is 
propagated to the end and corrected 
classically



Recursion

● Use Majority of Majority of Majority…

● Causal influence only travel upwards

● Reduces the lightcone blowup of the 
construction
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Theorem. There exists a family of 𝑛 qubit, 𝑂(1) local Hamiltonians at any finite 
temperature 𝛽, which is
• Rapidly thermalizing in time 𝑛$(&)
• Classically intractable under standard complexity-theoretic assumptions 



Future directions

● Noise robustness?
○ We can handle measurement noise with a larger blowup
○ The hope is that the Gibbs state is already a natural “noise model”

● Complexity of temperature
● Can we embed more general quantum computation into a constant 

temperature Gibbs state? 
○ Resource state for universal MBQC
○ Universal quantum computation by directly sampling from Gibbs states?
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Most important open question in NISQ/Early-FT

● Quantum computational advantage with noisy shallow 
circuits:

● Is there a family of constant (or 𝑂(log 𝑛)) depth circuits 
which is classically hard-to-sample from (within 1/poly TVD) 
under depolarizing noise?
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Thanks!


